
gSOAP 2.2.3 User Guide

Robert van Engelen
Genivia inc. and Florida State University

engelen@acm.org

March 18, 2003

Contents

1 Introduction 5

2 Notational Conventions 6

3 Differences Between gSOAP Versions 2.1 (and Earlier) and 2.2 7

4 Differences Between gSOAP Versions 1.X and 2.X 7

5 Interoperability 9

6 Quick User Guide 10

6.1 How to Use the gSOAP Stub and Skeleton Compiler to Build SOAP Clients . . . 11

6.1.1 Example . 11

6.1.2 Namespace Considerations . 15

6.1.3 Example . 16

6.1.4 How to Generate C++ Client Proxy Classes 17

6.1.5 XSD Type Encoding Considerations . 18

6.1.6 Example . 19

6.1.7 How to Change the Response Element Name 20

6.1.8 Example . 20

6.1.9 How to Specify Multiple Output Parameters 21

6.1.10 Example . 21

6.1.11 How to Specify Output Parameters With struct/class Compound Data
Types . 22

6.1.12 Example . 22

6.1.13 How to Specify Anonymous Parameter Names 25

6.1.14 How to Specify a Method with No Input Parameters 26

6.1.15 How to Specify a Method with No Output Parameters 26

6.2 How to Use the gSOAP Stub and Skeleton Compiler to Build SOAP Web Services 27

1

6.2.1 Example . 27

6.2.2 How to Create a Stand-Alone gSOAP Service 29

6.2.3 How to Create a Multi-Threaded Stand-Alone Service 30

6.2.4 Some Web Service Implementation Issues 33

6.2.5 How to Generate WSDL Service Descriptions 33

6.2.6 Example . 34

6.2.7 How to Import WSDL Service Descriptions 37

6.2.8 How to Use Client Functionalities Within a Service 37

6.3 How to Use gSOAP for Asynchronous One-Way Message Passing 39

6.4 How to Use the SOAP Serializers and Deserializers to Save and Load Application
Data . 40

6.4.1 Serializing a Data Type . 40

6.4.2 Deserializing a Data Type . 43

6.4.3 Example . 44

6.4.4 How to Specify Default Values for Omitted Data 48

7 Using the gSOAP Stub and Skeleton Compiler 49

7.1 Compiler Options . 50

7.2 SOAP 1.1 Versus SOAP 1.2 . 51

7.3 The soapdefs.h Header File . 52

7.4 The gSOAP #import Directive . 52

7.5 How to Use #include and #define Directives . 53

7.6 Compiling a gSOAP Client . 53

7.7 Compiling a gSOAP Web Service . 54

7.8 Using gSOAP for Creating Web Services and Clients in Pure C 55

7.9 Limitations of gSOAP . 55

7.10 Runtime Flags . 56

7.11 Memory Management . 58

7.11.1 Memory Management Policies . 59

7.11.2 Intra-Class Memory Management . 61

7.12 Debugging . 62

7.13 Libraries . 63

8 The gSOAP Remote Method Specification Format 64

8.1 Remote Method Parameter Passing . 65

8.2 Stub and Skeleton Routine Error Codes . 66

8.3 C/C++ Identifier Name to XML Name Translations 68

8.4 Namespace Mapping Table . 69

2

9 gSOAP Serialization and Deserialization Rules 71

9.1 Primitive Type Encoding . 71

9.2 How to Encode and Decode Primitive Types as XSD Types 71

9.2.1 How to Use Multiple C/C++ Types for a Single Primitive XSD Type . . 78

9.2.2 How to use Wrapper Classes to Specify Polymorphic Primitive Types . . 78

9.2.3 XML Schema Type Decoding Rules . 80

9.2.4 Multi-Reference Strings . 83

9.2.5 “Smart String” Mixed-Content Decoding 83

9.2.6 Changing the Encoding Precision of float and double Types 84

9.2.7 INF, -INF, and NaN Values of float and double Types 85

9.3 Enumeration Type Encoding and Decoding . 85

9.3.1 Symbolic Encoding of Enumeration Constants 85

9.3.2 Literal Encoding of Enumeration Constants 86

9.3.3 Initialized Enumeration Constants . 86

9.3.4 How to “Reuse” Symbolic Enumeration Constants 87

9.3.5 Boolean Enumeration Type Encoding and Decoding for C Compilers . . . 87

9.3.6 Bitmask Enumeration Encoding and Decoding 88

9.4 Struct Encoding and Decoding . 88

9.5 Class Instance Encoding and Decoding . 89

9.5.1 Example . 90

9.5.2 Initialized static const Fields . 91

9.5.3 Class Methods . 91

9.5.4 Polymorphism, Derived Classes, and Dynamic Binding 91

9.5.5 Struct/Class Encoding With XML Attributes 94

9.6 Pointer Encoding and Decoding . 96

9.6.1 Multi-Reference Data . 96

9.6.2 NULL Pointers and Nil Elements . 97

9.7 Fixed-Size Arrays . 98

9.8 Dynamic Arrays . 99

9.8.1 One-Dimensional Dynamic Arrays . 99

9.8.2 Example . 100

9.8.3 One-Dimensional Dynamic Arrays With Non-Zero Offset 101

9.8.4 Nested One-Dimensional Dynamic Arrays 102

9.8.5 Multi-Dimensional Dynamic Arrays . 103

9.8.6 Dynamic Array as List Encoding . 104

9.8.7 Polymorphic Dynamic Arrays and Lists 105

9.8.8 How to Change the Tag Names of the Elements of a SOAP Array or List 105

9.8.9 Embedded Arrays and Lists . 106

9.9 Base64Binary XML Schema Type Encoding . 107

3

9.10 hexBinary XML Schema Type Encoding . 109

9.11 Doc/Literal XML Encoding Style . 110

9.11.1 Serializing and Deserializing XML Into Strings 112

10 SOAP Fault Processing 113

11 SOAP Header Processing 115

12 DIME Attachment Processing 117

12.1 Non-Streaming DIME . 117

12.2 Streaming DIME . 118

13 Advanced Features 121

13.1 Internationalization . 121

13.2 Customizing the WSDL and Namespace Mapping Table File Contents 121

13.3 How to Specify minOccurs and maxOccurs Schema Attributes 125

13.4 Transient Data Types . 126

13.5 How to Declare User-Defined Serializers and Deserializers 127

13.6 How to Serialize Data Without Generating XSD Type Attributes 128

13.7 Function Callbacks for Customized I/O and HTTP Handling 128

13.8 Speed Improvement Tips . 133

13.9 HTTP 1.0 and 1.1 . 134

13.10HTTP Keep-Alive . 134

13.11HTTP Chunked Transfer Encoding . 136

13.12HTTP Buffered Sends . 136

13.13HTTP Authentication . 136

13.14HTTP Proxy Authentication . 137

13.15Timeout Management for Non-Blocking Operations 138

13.16Socket Options and Flags . 139

13.17Secure SOAP Clients with HTTPS/SSL . 139

13.18Secure SOAP Web Services with HTTPS/SSL . 140

13.19SSL Certificates . 141

13.20Zlib Compressed Messages . 143

13.21Client-Side Cookie Support . 144

13.22Server-Side Cookie Support . 145

13.23Connecting Clients Through Proxy Servers . 148

13.24FastCGI Support . 148

13.25How to Create Separate Client/Server DLLs . 148

13.25.1 Create Base stdsoap2.dll . 148

13.25.2 Creating Client and Service DLLs . 149

13.25.3 gSOAP Plug-ins . 149

Copyright (C) 2000-2003 Robert A. van Engelen, Genivia inc. All Rights Reserved.

4

1 Introduction

The gSOAP toolkit provides a unique SOAP-to-C/C++ language binding for the development
of SOAP Web Services and clients. Other SOAP C++ implementations adopt a SOAP-centric
view and offer SOAP APIs for C++ that require the use of class libraries for SOAP-like data
structures. This often forces a user to adapt the application logic to these libraries. In contrast,
gSOAP provides a C/C++ transparent SOAP API through the use of compiler technology that
hides irrelevant SOAP-specific details from the user. The gSOAP stub and skeleton compiler
automatically maps native and user-defined C and C++ data types to semantically equivalent
SOAP data types and vice-versa. As a result, full SOAP interoperability is achieved with a simple
API relieving the user from the burden of SOAP details and enables him or her to concentrate on the
application-essential logic. The compiler enables the integration of (legacy) C/C++ and Fortran
codes (through a Fortran-to-C interface), embedded systems, and real-time software in SOAP
applications that share computational resources and information with other SOAP applications,
possibly across different platforms, language environments, and disparate organizations located
behind firewalls.

gSOAP minimizes application adaptation for building SOAP clients and Web Services. The gSOAP
compiler generates SOAP marshalling routines that (de)serialize application-specific C/C++ data
structures. gSOAP includes a WSDL generator to generate Web service descriptions for your Web
services. The gSOAP WSDL importer ”closes the circle” in that it enables client development
without the need for users to analyze Web service details to implement a client.

Some of the highlights of gSOAP are:

• Unique interoperability features: the gSOAP compiler generates SOAP marshalling routines
that (de)serialize native and user-defined C/C++ data structures. gSOAP is also one of
the few SOAP toolkits that support the full range of SOAP 1.1 features including multi-
dimensional arrays and polymorphic types. For example, a remote method with a base class
parameter may accept derived class instances from a client. Derived class instances keep their
identity through dynamic binding.

• gSOAP includes a WSDL generator for convenient Web Service publishing.

• gSOAP includes a WSDL importer for automated client development.

• Generates source code for stand-alone Web Services and clients.

• Ideal for building web services that are compute-intensive and are therefore best written in
C and C++.

• Platform independent: Windows, Unix, Linux, Mac OS X, Pocket PC, etc.

• Fast in situ serialization and deserialization with SOAP encoding of arbitrary user-defined
and built-in C and C++ data structures.

• Fully SOAP 1.1 compliant data encoding and decoding. Also SOAP 1.2 compliant, but the
SOAP 1.2 specification is in a drafting stage.

• DIME compliant attachments with streaming capabilities.

• Zlib deflate and gzip compression.

5

• Includes HTTP, TCP/IP, XML, and DIME stacks.

• Supports one-way messaging, including asynchronous send and receive operations.

• Supports saving and loading of XML serialized C/C++ data structures to/from files.

• The schema-specific XML pull parser is fast and efficient and does not require intermediate
data storage for demarshalling to save space and time.

• Selective input and output buffering is used to increase efficiency, but full message buffering
to determine HTTP message length is not used. Instead, a three-phase serialization method is
used to determine message length. As a result, large data sets such as base64-encoded images
can be transmitted with or without DIME attachments by small-memory devices such as
PDAs.

• Supports C++ single class inheritance, dynamic binding, overloading, arbitrary pointer struc-
tures such as lists, trees, graphs, cyclic graphs, fixed-size arrays, (multi-dimensional) dy-
namic arrays, enumerations, built-in XML schema types including base64Binary encoding,
and hexBinary encoding.

• No need to rewrite existing C/C++ applications for Web service deployment. However, parts
of an application that use unions, pointers to sequences of elements in memory, and void* need
to be modified, but only if the data structures that adopt them are required to be serialized
or deserialized as part of a remote method invocation.

• Three-phase marshalling: 1) analysis of pointers, single-reference, multi-reference, and cyclic
data structures, 2) HTTP message-length determination, and 3) serialization as per SOAP
1.1 encoding style or user-defined encoding styles.

• Two-phase demarshalling: 1) SOAP parsing and decoding, which involves the reconstruction
of multi-reference and cyclic data structures from the payload, and 2) resolution of ”forward”
pointers (i.e. resolution of the forward href attributes in SOAP).

• Full and customizable SOAP Fault processing (client receive and service send).

• Customizable SOAP Header processing (send and receive), which for example enables easy
transaction processing for the service to keep state information.

2 Notational Conventions

The typographical conventions used by this document are:

Sans serif or italics font denotes C and C++ source code, file names, and shell/batch commands.

Bold font denotes C and C++ keywords.

Courier font denotes HTTP header content, HTML, XML, XML schema content and WSDL
content.

[Optional] denotes an optional construct.

6

The keywords ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”,
”SHOULD NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be
interpreted as described in RFC-2119.

3 Differences Between gSOAP Versions 2.1 (and Earlier) and 2.2

Run-time options and flags have been changed to enable separate recv/send settings for transport,
content encodings, and mappings. The flags are divided into four classes: transport (IO), content
encoding (ENC), XML marshalling (XML), and C/C++ data mapping (C). The old-style flags
soap disable X and soap enable X, where X is a particular feature, are depricated. See Section 7.10 for
more details.

4 Differences Between gSOAP Versions 1.X and 2.X

gSOAP versions 2.0 and higher have been rewritten based on versions 1.X. gSOAP 2.0 and higher
is thread-safe, while 1.X is not. All files in the gSOAP 2.X distribution are renamed to avoid
confusion with gSOAP version 1.X files:

gSOAP 1.X gSOAP 2.X
soapcpp soapcpp2
soapcpp.exe soapcpp2.exe
stdsoap.h stdsoap2.h
stdsoap.c stdsoap2.c
stdsoap.cpp stdsoap2.cpp

Changing the version 1.X application codes to accomodate gSOAP 2.X does not require a significant
amount of recoding. The change to gSOAP 2.X affects all functions defined in stdsoap2.c[pp] (the
gSOAP runtime environment API) and the functions in the sources generated by the gSOAP com-
piler (the gSOAP RPC+marshalling API). Therefore, clients and services developed with gSOAP
1.X need to be modified to accomodate a change in the calling convention used in 2.X: In 2.X, all
gSOAP functions (including the remote method proxy routines) take an additional parameter which
is an instance of the gSOAP runtime environment that includes file descriptors, tables, buffers, and
flags. This additional parameter is always the first parameter of any gSOAP function.

The gSOAP runtime environment is stored in a struct soap type. A struct was chosen to support
application development in C without the need for a separate gSOAP implementation. An object-
oriented approach with a class for the gSOAP runtime environment would have prohibited the
implementation of pure C applications. Before a client can invoke remote methods or before a
service can accept requests, a runtime environment need to be allocated and initialized. Three new
functions are added to gSOAP 2.X:

7

Function
Description

soap init(struct soap *soap) Initializes a runtime environment (required only once)
struct soap *soap new() Allocates, initializes, and returns a pointer to a runtime

environment
struct soap *soap copy(struct soap *soap) Allocates a new runtime invironment and copies contents

of the argument environment such that the new environ-
ment does not share any data with the original environ-
ment

An environment can be reused as many times as necessary and does not need to be reinitialized in
doing so. A new environment is only required for each new thread to guarantee exclusive access
to a new runtime environment by each thread. For example, the following code stack-allocates the
runtime environment which is used for multiple remote method calls:

int main()
{

struct soap soap;
...
soap init(&soap); // initialize runtime environment
...
soap call ns method1(&soap, ...); // make a remote call
...
soap call ns method2(&soap, ...); // make another remote call
...
soap end(&soap); // clean up
...

}

The runtime environment can also be heap allocated:

int main()
{

struct soap *soap;
...
soap = soap new(); // allocate and initialize runtime environment
if (!soap) // couldn’t allocate: stop
...
soap call ns method1(soap, ...); // make a remote call
...
soap call ns method2(soap, ...); // make another remote call
...
soap end(soap); // clean up
...
free(soap); // deallocate runtime environment
}

A service need to allocate and initialize an environment before calling soap serve:

int main()
{

struct soap soap;
soap init(&soap);

8

soap serve(&soap);
}

Or alternatively:

int main()
{

soap serve(soap new());
}

A service can use multi-threading to handle requests while running some other code that invokes
remote methods:

int main()
{

struct soap soap1, soap2;
pthread t tid;
...
soap init(&soap1);
if (soap bind(&soap1, host, port, backlog) < 0) exit(1);
if (soap accept(&soap1) < 0) exit(1);
pthread create(&tid, NULL, (void*(*)(void*))soap serve, (void*)&soap1]);
...
soap init(&soap2);
soap call ns method(&soap2, ...); // make a remote call
...
soap end(&soap2);
...
pthread join(tid); // wait for thread to terminate
soap end(&soap1); // release its data
}

In the example above, two runtime environments are required. In comparison, gSOAP 1.X statically
allocates the runtime environment, which prohibits multi-threading (only one thread can invoke
remote methods and/or accept requests due to the single runtime environment).

Section 6.2.3 presents a multi-threaded stand-alone Web Service that handles multiple SOAP re-
quests by spawning a thread for each request.

5 Interoperability

gSOAP interoperability has been verified with the following SOAP implementations and toolkits:

Apache 2.2

Apache Axis

ASP.NET

Cape Connect

Delphi

9

easySOAP++

eSOAP

Frontier

GLUE

Iona XMLBus

kSOAP

MS SOAP

Phalanx

SIM

SOAP::Lite

SOAP4R

Spray

SQLData

Wasp Adv.

Wasp C++

White Mesa

xSOAP

ZSI

4S4C

6 Quick User Guide

This user guide offers a quick way to get started with gSOAP. This section requires a basic under-
standing of the SOAP 1.1 protocol and some familiarity with C and/or C++. In principle, SOAP
clients and SOAP Web services can be developed in C and C++ with the gSOAP compiler without
a detailed understanding of the SOAP protocol when gSOAP client-server applications are build as
an ensamble and only communicate within this group (i.e. meaning that you don’t have to worry
about interoperability with other SOAP implementations). This section is intended to illustrate
the implementation of gSOAP Web services and clients that connect to and interoperate with other
SOAP implementations such as Apache Axis, SOAP::Lite, and .NET. This requires some details of
the SOAP and WSDL protocols to be understood.

10

6.1 How to Use the gSOAP Stub and Skeleton Compiler to Build SOAP Clients

In general, the implementation of a SOAP client application requires a stub routine for each
remote method that the client application needs to invoke. The primary stub’s responsibility is to
marshall the input data, send the request to the designated SOAP service over the wire, to wait for
the response, and to demarshall the output data when it arrives. The client application invokes the
stub routine for a remote method as if it would invoke a local method. To write a stub routine in
C or C++ by hand is a tedious task, especially if the input and/or output parameters of a remote
method contain elaborate data structures such as records, arrays, and graphs.

The generation of stub routines for a SOAP client is fully automated with gSOAP. The gSOAP stub
and skeleton compiler is a preprocessor that generates the necessary C++ sources to build SOAP
C++ clients. The input to the gSOAP stub and skeleton compiler consists of a standard C/C++
header file. The header file can be generated from a WSDL (Web Service Description Language)
documentation of a service with the gSOAP WSDL importer, see 6.2.7. The SOAP remote methods
are specified in this header file as function prototypes. Stub routines in C/C++ source form are
automatically generated by the gSOAP compiler for these function prototypes of remote methods.
The resulting stub routines allow C and C++ client applications to seamlessly interact with existing
SOAP Web services.

The gSOAP stub and skeleton compiler also generates skeleton routines for each of the remote
methods specified in the header file. The skeleton routines can be readily used to implement one
or more of the remote methods in a new SOAP Web service. These skeleton routines are not used
for building SOAP clients in C++, although they can be used to build mixed SOAP client/server
applications (peer applications).

The input and output parameters of a SOAP remote method may be simple data types or compound
data types. The necessary type declarations of C/C++ user-defined data structures such as
structs, classes, enumerations, arrays, and pointer-based data structures (graphs) are to be provided
in the header file. The gSOAP stub and skeleton compiler automatically generates serializers and
deserializers for the data types to enable the generated stub routines to encode and decode the
contents of the parameters of the remote methods in XML.

The remote method name and its parameterization can be found with a SOAP Web service descrip-
tion, typically in the form of an XML schema. For SOAP 1.1 RPC encoding, there is a one-to-one
correspondence between the XML schema description of a SOAP remote method and the C/C++
type declarations required to build a client application for the Web service. There is also an almost
one-to-one correspondence between the schemas and the C/C++ type declarations for SOAP literal
encoding. The schemas are typically part of the WSDL specification of a SOAP Web service. The
gSOAP WSDL importer converts WSDL service descriptions into header files.

6.1.1 Example

The getQuote remote method of XMethods Delayed Stock Quote service provides a delayed stock
quote for a given ticker name. The WSDL description of the XMethods Delayed Stock Quote
service provides the following details:

11

Endpoint URL: http://services.xmethods.net:80/soap
SOAP action: ”” (2 quotes)
Remote method namespace: urn:xmethods-delayed-quotes
Remote method name: getQuote

Input parameter: symbol of type xsd:string
Output parameter: Result of type xsd:float

The following getQuote.h header file is created from the WSDL description with the WSDL im-
porter:

// Content of file "getQuote.h":
int ns1 getQuote(char *symbol, float &Result);

The header file essentially specifies the service details in C/C++ with directives for the gSOAP
compiler. The remote method is declared as a ns1 getQuote function prototype which specifies all
of the necessary details for the gSOAP compiler to generate the stub routine for a client application
to interact with the Delayed Stock Quote service.

The Delayed Stock Quote service description requires that the input parameter of the getQuote

remote method is a symbol parameter of type string. The description also indicates that the Result

output parameter is a floating point number that represents the current unit price of the stock
in dollars. The gSOAP compiler uses the convention the last parameter of the function prototype
must be the output parameter of the remote method, which is required to be passed by reference
using the reference operator (&) or by using a pointer type. All other parameters except the last are
input parameters of the remote method, which are required to be passed by value or passed using
a pointer to a value (by reference is not allowed). The function prototype associated with a remote
method is required to return an int, whose value indicates to the caller whether the connection to
a SOAP Web service was successful or resulted in an exception, see Section 8.2 for the error codes.

The use of the namespace prefix ns1 in the remote method name in the function prototype
declaration is discussed in detail in 6.1.2. Basically, a namespace prefix is distinghuished by a pair
of underscores in the function name, as in ns1 getQuote where ns1 is the namespace prefix and
getQuote is the remote method name. (A single underscore in an identifier name will be translated
into a dash in XML, because dashes are more frequently used in XML compared to underscores,
see Section 8.3.)

The gSOAP compiler is invoked from the command line with:

soapcpp2 getQuote.h

The compiler generates the stub routine for the getQuote remote method specified in the getQuote.h

header file. This stub routine can be called by a client program at any time to request a stock
quote from the Delayed Stock Quote service. The interface to the generated stub routine is the
following function prototype generated by the gSOAP compiler:

int soap call ns1 getQuote(struct soap *soap, char *URL, char *action, char *symbol, float
&Result);

The stub routine is saved in soapClient.cpp. The file soapC.cpp contains the serializer and deseri-
alizer routines for the data types used by the stub.

12

Note that the parameters of the soap call ns1 getQuote function are identical to the ns1 getQuote

function prototype with three additional input parameters: soap must be a valid pointer to a gSOAP
runtime environment, URL is the SOAP Web service endpoint URL passed as a string, and action

is a string that denotes the SOAP action required by the Web service.

The following example C++ client program invokes the stub to retrieve the latest AOL stock quote
from the XMethods Delayed Stock Quote service:

#include "soapH.h" // obtain the generated stub
int main()
{

struct soap soap; // gSOAP runtime environment
float quote;
soap init(&soap); // initialize runtime environment (only once)
if (soap call ns1 getQuote(&soap, "http://services.xmethods.net:80/soap", "", "AOL",

quote) == SOAP OK)
cout << ”Current AOL Stock Quote = ” << quote;

else // an error occurred
soap print fault(&soap, stderr); // display the SOAP fault message on the stderr stream

soap end(&soap); // clean up
}

The XMethods Delayed Stock Quote service endpoint URL is http://services.xmethods.net/soap

port 80 and the SOAP action required is "" (two quotes). If successful, the stub returns SOAP OK

and quote contains the latest stock quote. Otherwise, an error occurred and the SOAP fault is
displayed with the soap print fault function.

The following functions can be used to setup a gSOAP runtime environment (struct soap):

Function
Description

soap init(struct soap *soap) Initializes a runtime environment (required only once)
soap init2(struct soap *soap, int imode, int omode) Initializes a runtime environment and set in/out mode flags
struct soap *soap new() Allocates, initializes, and returns a pointer to a runtime

environment
struct soap *soap copy(struct soap *soap) Allocates a new runtime invironment and copies contents

of the argument environment such that the new environ-
ment does not share data with the argument environment

soap done(struct soap *soap) Reset, close communications, and remove callbacks

An environment can be reused as many times as necessary for client-side remote calls and does
not need to be reinitialized in doing so. A new environment is required for each new thread to
guarantee exclusive access to runtime environments by threads. Also the use of any client calls
within an active service method requires a new environment.

When the example client application is invoked, the SOAP request is performed by the stub routine
soap call ns1 getQuote, which generates the following SOAP RPC request message:

POST /soap HTTP/1.1
Host: services.xmethods.net
Content-Type: text/xml
Content-Length: 529
SOAPAction: ""

13

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:ns1="urn:xmethods-delayed-quotes"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<ns1:getQuote>
<symbol>AOL</symbol>
</ns1:getQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The XMethods Delayed Stock Quote service responds with the SOAP response message:

HTTP/1.1 200 OK
Date: Sat, 25 Aug 2001 19:28:59 GMT
Content-Type: text/xml
Server: Electric/1.0
Connection: Keep-Alive
Content-Length: 491

<?xml version=’1.0’ encoding=’UTF-8’?>
<soap:Envelope xmlns:soap=’http://schemas.xmlsoap.org/soap/envelope/’
xmlns:xsi=’http://www.w3.org/1999/XMLSchema-instance’
xmlns:xsd=’http://www.w3.org/1999/XMLSchema’
xmlns:soapenc=’http://schemas.xmlsoap.org/soap/encoding/’
soap:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’>

<soap:Body>
<n:getQuoteResponse xmlns:n=’urn:xmethods-delayed-quotes’>
<Result xsi:type=’xsd:float’>41.81</Result>
</n:getQuoteResponse>
</soap:Body>
</soap:Envelope>

The server’s SOAP RPC response is parsed by the stub. The stub routine further demarshalls the
data of Result element of the SOAP response and stores it in the quote parameter of soap call ns1 getQuote.

A client program can invoke a remote method at any time and multiple times if necessary. Consider
for example:

...
struct soap soap;
float quotes[3]; char *myportfolio[] = {"IBM", "AOL", "MSDN"};
soap init(&soap); // need to initialize only once
for (int i = 0; i < 3; i++)

if (soap call ns1 getQuote(&soap, "http://services.xmethods.net:80/soap", "", myport-
folio[i], quotes[i]) != SOAP OK)

break;
if (soap.error) // an error occurred

soap print fault(&soap, stderr);

14

soap end(&soap); // clean up all deserialized data
...

This client composes an array of stock quotes by calling the ns1 getQuote stub routine for each
symbol in a portfolio array.

This example demonstrated how easy it is to build a SOAP client with gSOAP once the details of
a Web service are available in the form of a WSDL document.

6.1.2 Namespace Considerations

The declaration of the ns1 getQuote function prototype (discussed in the previous section) uses
the namespace prefix ns1 of the remote method namespace, which is distinghuished by a pair
of underscores in the function name to separate the namespace prefix from the remote method
name. The purpose of a namespace prefix is to associate a remote method name with a service
in order to prevent naming conflicts, e.g. to distinguish identical remote method names used by
different services.

Note that the XML response of the XMethods Delayed Stock Quote service example uses the
namespace prefix n which is bound to the namespace name urn:xmethods-delayed-quotes

through the xmlns:n="urn:xmethods-delayed-quotes binding. The use of namespace prefixes and
namespace names is also required to enable SOAP applications to validate the content of SOAP
messages. The namespace name in the service response is verified by the stub routine by using the
information supplied in a namespace mapping table that is required to be part of gSOAP client
and service application codes. The table is accessed at run time to resolve namespace bindings, both
by the generated stub’s data structure serializer for encoding the client request and by the generated
stub’s data structure deserializer to decode and validate the service response. The namespace
mapping table should not be part of the header file input to the gSOAP stub and skeleton compiler.
Service details including namespace bindings may be provided with gSOAP directives in a header
file, see Section 13.2.

The namespace mapping table for the Delayed Stock Quote client is:

struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”}
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”}, // MUST be first
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”}, // MUST be second
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”}, // MUST be third
{”xsd”, ”http://www.w3.org/2001/XMLSchema”}, // 2001 XML schema
{”ns1”, ”urn:xmethods-delayed-quotes”}, // given by the service description
{NULL, NULL} // end of table
};

The first four namespace entries in the table consist of the standard namespaces used by the SOAP
1.1 protocol. In fact, the namespace mapping table is explicitly declared to enable a programmer
to specify the SOAP encoding style and to allow the inclusion of namespace-prefix with namespace-
name bindings to comply to the namespace requirements of a specific SOAP service. For example,
the namespace prefix ns1, which is bound to urn:xmethods-delayed-quotes by the namespace map-
ping table shown above, is used by the generated stub routine to encode the getQuote request. This
is performed automatically by the gSOAP compiler by using the ns1 prefix of the ns1 getQuote

15

method name specified in the getQuote.h header file. In general, if a function name of a remote
method, struct name, class name, enum name, or field name of a struct or class has a pair of
underscores, the name has a namespace prefix that must be defined in the namespace mapping
table.

The namespace mapping table will be output as part of the SOAP Envelope by the stub routine.
For example:

...
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:ns1="urn:xmethods-delayed-quotes"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

...

The namespace bindings will be used by a SOAP service to validate the SOAP request.

6.1.3 Example

The incorporation of namespace prefixes into C++ identifier names is necessary to distinguish
remote methods that share the same name but are provided by separate Web services and/or
organizations. Consider for example:

// Contents of file ”getQuote.h”:
int ns1 getQuote(char *symbol, float &Result);
int ns2 getQuote(char *ticker, char *"e);

Recall that the namespace prefix is always separated from the name of a remote method by a pair
of underscores ().

This example enables a client program to connect to a (hypothetical) Stock Quote service with
remote methods that can only be distinghuished by their namespaces. Consequently, two different
namespace prefixes had to be used as part of the remote method names.

The namespace prefix convention can also be applied to class declarations that contain SOAP
compound values that share the same name but have different namespaces that refer to different
XML schemas. For example:

class e Address // an electronic address
{

char *email;
char *url;
};
class s Address // a street address
{

char *street;
int number;
char *city;
};

16

The namespace prefix is separated from the name of a data type by a pair of underscores ().

An instance of e Address is encoded by the generated serializer for this type as an Address element
with namespace prefix e:

<e:Address xsi:type="e:Address">
<email xsi:type="string">me@home</email>
<url xsi:type="string">www.me.com</url>
</e:Address>

While an instance of s Address is encoded by the generated serializer for this type as an Address
element with namespace prefix s:

<s:Address xsi:type="s:Address">
<street xsi:type="string">Technology Drive</street>
<number xsi:type="int">5</number>
<city xsi:type="string">Softcity</city>
</s:Address>

The namespace mapping table of the client program must have entries for e and s that refer to the
XML schemas of the data types:

struct Namespace namespaces[] =
{ ...
{”e”, ”http://www.me.com/schemas/electronic-address”},
{”s”, ”http://www.me.com/schemas/street-address”},

...

This table is required to be part of the client application to allow access by the serializers and
deserializers of the data types at run time.

6.1.4 How to Generate C++ Client Proxy Classes

Proxy classes for C++ client applications are automatically generated by the gSOAP compiler
provided that the WSDL importer is used or sufficient server details are given in the header file in
the form of //gsoap directives, see Section 13.2 for more details on these directives.

To illustrate the generation of a proxy class, the getQuote.h header file example of the previous
section is augmented with the appropriate directives to enable the gSOAP compiler to generate the
proxy class. Similar directives are included in the header file by the WSDL importer.

// Content of file "getQuote.h":
//gsoap ns1 service name: Quote
//gsoap ns1 service location: http://services.xmethods.net/soap
//gsoap ns1 schema namespace: urn:xmethods-delayed-quotes
//gsoap ns1 service method-action: getQuote ””
int ns1 getQuote(char *symbol, float &Result);

The first three directives provide the service name which is used to name the proxy class, the service
location (endpoint), and the schema. The fourth directive defines the optional SOAPAction, which
is a string associated with SOAP 1.1 operations. This directive must be provided for each remote
method when the SOAPAction is required. Compilation of this header file with the gSOAP compiler
soapcpp2 creates a new file soapQuoteProxy.h with the following contents:

17

#include ”soapH.h”
class Quote
{ public:

struct soap *soap;
const char *endpoint;
Quote() { soap = soap new(); endpoint = ”http://services.xmethods.net/soap”; };
˜Quote() { if (soap) { soap destroy(soap); soap end(soap); soap done(soap); free((void*)soap);
}};

int getQuote(char *symbol, float &result) { return soap ? soap call ns getQuote(soap, end-
point, ””, symbol, result) : SOAP EOM; };
};

The gSOAP environment and endpoint are declared public to enable access for run-time customiza-
tion.

This generated proxy class can be included into a client application together with the generated
namespace table as shown in this example: Quote.nsmap:

#include <iostream.h>
#include ”soapQuoteProxy.h” // get proxy
#include ”Quote.nsmap” // get namespace bindings
int main()
{

Quote q;
float r;
if (q.getQuote(”AOL”, r) == SOAP OK)

cout << r << endl;
else

soap print fault(q.soap, stderr);
}

The Quote constructor allocates and initializes a gSOAP environment for the instance. All the
HTTP and SOAP/XML processing is hidden and performed on the background.

6.1.5 XSD Type Encoding Considerations

Many SOAP services require the explicit use of XML schema types in the SOAP payload. The
default encoding, which is also adopted by the gSOAP compiler, assumes SOAP RPC encoding
which only requires the use of types to handle polymorphic cases. Nevertheless, the use of XSD
typed messages is adviced to improve interoperability. XSD types are introduced with typedef

definitions in the header file input to the gSOAP compiler. The type name defined by a typedef

definition corresponds to an XML schema type (XSD type). For example, the following typedef

declarations define various built-in XSD types implemented as primitive C/C++ types:

// Contents of header file:
...
typedef char *xsd string; // encode xsd string value as the xsd:string schema type
typedef char *xsd anyURI; // encode xsd anyURI value as the xsd:anyURI schema type
typedef float xsd float; // encode xsd float value as the xsd:float schema type
typedef long xsd int; // encode xsd int value as the xsd:int schema type
typedef bool xsd boolean; // encode xsd boolean value as the xsd:boolean schema type

18

typedef unsigned long long xsd positiveInteger; // encode xsd positiveInteger value as the
xsd:positiveInteger schema type
...

This simple mechanism informs the gSOAP compiler to generate serializers and deserializers that
explicitly encode and decode the primitive C++ types as built-in primitive XSD types when the
typedefed type is used in the parameter signature of a remote method (or when used nested within
structs, classes, and arrays). At the same time, the use of typedef does not force any recoding of a
C++ client or Web service application as the internal C++ types used by the application are not
required to be changed (but still have to be primitive C++ types, see Section 9.2.2 for alternative
class implementations of primitive XSD types which allows for the marshalling of polymorphic
primitive types).

6.1.6 Example

Reconsider the getQuote example, now rewritten with explicit XSD types to illustrate the effect:

// Contents of file ”getQuote.h”:
typedef char *xsd string;
typedef float xsd float;
int ns1 getQuote(xsd string symbol, xsd float &Result);

This header file is compiled by the gSOAP stub and skeleton compiler and the compiler generates
source code for the function soap call ns1 getQuote, which is identical to the “old” proxy:

int soap call ns1 getQuote(struct soap *soap, char *URL, char *action, char *symbol, float
&Result);

The client application does not need to be rewritten and can still call the proxy using the “old”
parameter signature. In contrast to the previous implementation of the stub however, the encoding
and decoding of the data types by the stub has been changed to explicitly use the XSD types in
the message payload.

For example, when the client application calls the proxy, the proxy produces a SOAP request with
an xsd:string:

...
<SOAP-ENV:Body>
<ns1:getQuote><symbol xsi:type="xsd:string">AOL</symbol>
</ns1:getQuote>
</SOAP-ENV:Body>
...

The service response is:

...
<soap:Body>
<n:getQuoteResponse xmlns:n=’urn:xmethods-delayed-quotes’>
<Result xsi:type=’xsd:float’>41.81</Result>
</n:getQuoteResponse>
</soap:Body>
...

19

The validation of this service response by the stub routine takes place by matching the names-
pace names (URIs) that are bound to the xsd namespace prefix. The stub also expects the
getQuoteResponse element to be associated with URI urn:xmethods-delayed-quotes through the
binding of the namespace prefix ns1 in the namespace mapping table. The service response uses
namespace prefix n for the getQuoteResponse element. This namespace prefix is bound to the same
URI urn:xmethods-delayed-quotes and therefore the service response is assumed to be valid. The
response is rejected and a SOAP fault is generated when the URIs do not match.

6.1.7 How to Change the Response Element Name

There is no standardized convention for the response element name in a SOAP response message,
although it is recommended that the response element name is the method name ending with
“Response”. For example, the response element of getQuote is getQuoteResponse.

The response element name can be specified explicitly using a struct or class declaration in the
header file. The struct or class name represents the SOAP response element name used by the
service. Consequently, the output parameter of the remote method must be declared as a field of
the struct or class. The use of a struct or a class for the service response is fully SOAP 1.1 compliant.
In fact, the absence of a struct or class indicates to the gSOAP compiler to automatically generate
a struct for the response which is internally used by a stub.

6.1.8 Example

Reconsider the getQuote remote method specification which can be rewritten with an explicit dec-
laration of a SOAP response element as follows:

// Contents of ”getQuote.h”:
typedef char *xsd string;
typedef float xsd float;
struct ns1 getQuoteResponse {xsd float Result;};
int ns1 getQuote(xsd string symbol, struct ns1 getQuoteResponse &r);

The SOAP request is the same as before:

...
<SOAP-ENV:Body>
<ns1:getQuote><symbol xsi:type="xsd:string">AOL</symbol>
</ns1:getQuote>
</SOAP-ENV:Body>
...

The difference is that the service response is required to match the specified getQuoteResponse name
and its namespace URI:

...
<soap:Body>
<n:getQuoteResponse xmlns:n=’urn:xmethods-delayed-quotes’>
<Result xsi:type=’xsd:float’>41.81</Result>
</n:getQuoteResponse>
</soap:Body>
...

20

This use of a struct or class enables the adaptation of the default SOAP response element name
and/or namespace URI when required.

Note that the struct (or class) declaration may appear within the function prototype declaration.
For example:

// Contents of ”getQuote.h”:
typedef char *xsd string;
typedef float xsd float;
int ns1 getQuote(xsd string symbol, struct ns1 getQuoteResponse {xsd float Result;} &r);

This example combines the declaration of the response element of the remote method with the
function prototype of the remote method.

6.1.9 How to Specify Multiple Output Parameters

The gSOAP stub and skeleton compiler uses the convention that the last parameter of the
function prototype declaration of a remove method in a header file is also the only single output
parameter of the method. All other parameters are considered input parameters of the remote
method. To specify a remote method with multiple output parameters, a struct or class must
be declared for the remote method response, see also 6.1.7. The fields of the struct or class are the
output parameters of the remote method. Both the order of the input parameters in the function
prototype and the order of the output parameters (the fields in the struct or class) is not significant.
However, the SOAP 1.1 specification states that input and output parameters may be treated as
having anonymous parameter names which requires a particular ordering, see Section 6.1.13.

6.1.10 Example

As an example, consider a hypothetical remote method getNames with a single input parameter SSN

and two output parameters first and last. This can be specified as:

// Contents of file ”getNames.h”:
int ns3 getNames(char *SSN, struct ns3 getNamesResponse {char *first; char *last;} &r);

The gSOAP stub and skeleton compiler takes this header file as input and generates source code
for the function soap call ns3 getNames. When invoked by a client application, the proxy produces
the SOAP request:

...
<SOAP-ENV:Envelope ... xmlns:ns3="urn:names" ...>
...
<ns3:getNames>
<SSN>999 99 9999</SSN>
</ns3:getNames>
...

The response by a SOAP service could be:

...
<m:getNamesResponse xmlns:m="urn:names">

21

<first>John</first>
<last>Doe</last>
</m:getNamesResponse>
...

where first and last are the output parameters of the getNames remote method of the service.

As another example, consider a remote method copy with an input parameter and an output pa-
rameter with identical parameter names (this is not prohibited by the SOAP 1.1 protocol). This
can be specified as well using a response struct:

// Contente of file ”copy.h”:
int X rox copy name(char *name, struct X rox copy nameResponse {char *name;} &r);

The use of a struct or class for the remote method response enables the declaration of remote
methods that have parameters that are passed both as input and output parameters.

The gSOAP compiler takes the copy.h header file as input and generates the soap call X rox copy name

proxy. When invoked by a client application, the proxy produces the SOAP request:

...
<SOAP-ENV:Envelope ... xmlns:X-rox="urn:copy" ...>
...
<X-rox:copy-name>
<name>SOAP</name>
</X-rox:copy-name>
...

The response by a SOAP copy service could be something like:

...
<m:copy-nameResponse xmlns:m="urn:copy">
<name>SOAP</name>
</m:copy-nameResponse>
...

The name will be parsed and decoded by the proxy and returned in the name field of the struct

X rox copy nameResponse &r parameter.

6.1.11 How to Specify Output Parameters With struct/class Compound Data Types

If the single output parameter of a remote method is a complex data type such as a struct or class

it is necessary to specify the response element of the remote method as a struct or class at all
times. Otherwise, the output parameter will be considered the response element (!), because of
the response element specification convention used by gSOAP, as discussed in 6.1.7.

6.1.12 Example

This is is best illustrated with an example. The Flighttracker service by ObjectSpace provides
real time flight information for flights in the air. It requires an airline code and flight number as

22

parameters. The remote method name is getFlightInfo and the method has two string parameters:
the airline code and flight number, both of which must be encoded as xsd:string types. The method
returns a getFlightResponse response element with a return output parameter that is of complex type
FlightInfo. The type FlightInfo is represented by a class in the header file, whose field names correspond
to the FlightInfo accessors:

// Contents of file ”flight.h”:
typedef char *xsd string;
class ns2 FlightInfo
{

public:
xsd string airline;
xsd string flightNumber;
xsd string altitude;
xsd string currentLocation;
xsd string equipment;
xsd string speed;
};
struct ns1 getFlightInfoResponse {ns2 FlightInfo return;};
int ns1 getFlightInfo(xsd string param1, xsd string param2, struct ns1 getFlightInfoResponse
&r);

The response element ns1 getFlightInfoResponse is explicitly declared and it has one field: return of
type ns2 FlightInfo. Note that return has a trailing underscore to avoid a name clash with the return

keyword, see Section 8.3 for details on the translation of C++ identifiers to XML element names.

The gSOAP compiler generates the soap call ns1 getFlightInfo proxy. Here is an example fragment
of a client application that uses this proxy to request flight information:

struct soap soap;
...
soap init(&soap);
...
soap call ns1 getFlightInfo(&soap, "testvger.objectspace.com/soap/servlet/rpcrouter",
"urn:galdemo:flighttracker", "UAL", "184", r);

...
struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”,”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/1999/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/1999/XMLSchema”},
{”ns1”, ”urn:galdemo:flighttracker”},
{”ns2”, ”http://galdemo.flighttracker.com”},
{NULL, NULL}
};

When invoked by a client application, the proxy produces the SOAP request:

POST /soap/servlet/rpcrouter HTTP/1.1
Host: testvger.objectspace.com
Content-Type: text/xml

23

Content-Length: 634
SOAPAction: "urn:galdemo:flighttracker"

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:ns1="urn:galdemo:flighttracker"
xmlns:ns2="http://galdemo.flighttracker.com"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<ns1:getFlightInfo xsi:type="ns1:getFlightInfo">
<param1 xsi:type="xsd:string">UAL</param1>
<param2 xsi:type="xsd:string">184</param2>
</ns1:getFlightInfo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The Flighttracker service responds with:

HTTP/1.1 200 ok
Date: Thu, 30 Aug 2001 00:34:17 GMT
Server: IBM HTTP Server/1.3.12.3 Apache/1.3.12 (Win32)
Set-Cookie: sesessionid=2GFVTOGC30D0LGRGU2L4HFA;Path=/
Cache-Control: no-cache="set-cookie,set-cookie2"
Expires: Thu, 01 Dec 1994 16:00:00 GMT
Content-Length: 861
Content-Type: text/xml; charset=utf-8
Content-Language: en

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<ns1:getFlightInfoResponse xmlns:ns1="urn:galdemo:flighttracker"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xmlns:ns2="http://galdemo.flighttracker.com" xsi:type="ns2:FlightInfo">
<equipment xsi:type="xsd:string">A320</equipment>
<airline xsi:type="xsd:string">UAL</airline>
<currentLocation xsi:type="xsd:string">188 mi W of Lincoln, NE</currentLocation>
<altitude xsi:type="xsd:string">37000</altitude>
<speed xsi:type="xsd:string">497</speed>
<flightNumber xsi:type="xsd:string">184</flightNumber>
</return>
</ns1:getFlightInfoResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The proxy returns the service response in variable r of type struct ns1 getFlightInfoResponse and this
information can be displayed by the client application with the following code fragment:

24

cout << r.return .equipment << ” flight ” << r.return .airline << r.return .flightNumber
<< ” traveling ” << r.return .speed << ” mph ” << ” at ” << r.return .altitude
<< ” ft, is located ” << r.return .currentLocation ¡¡ endl;

This code displays the service response as:

A320 flight UAL184 traveling 497 mph at 37000 ft, is located 188 mi W of Lincoln,
NE

Note: the flight tracker service is no longer available since 9/11/2001. It is kept in the documen-
tation as an example to illustrate the use of structs/classes and response types.

6.1.13 How to Specify Anonymous Parameter Names

The SOAP 1.1 protocol allows parameter names to be anonymous. That is, the name(s) of the
output parameters of a remote method are not strictly required to match a client’s view of the
parameters names. Also, the input parameter names of a remote method are not striclty required to
match a service’s view of the parameter names. Although this convention is likely to be deprecated
in SOAP 1.2, the gSOAP compiler can generate stub and skeleton routines that support anonymous
parameters. Parameter names are implicitly anonymous by omitting the parameter names in the
function prototype of the remote method. For example:

// Contents of ”getQuote.h”:
typedef char *xsd string;
typedef float xsd float;
int ns1 getQuote(xsd string, xsd float&);

To make parameter names explicitly anonymous on the receiving side (client or service), the pa-
rameter names should start with an underscore () in the function prototype in the header file.

For example:

// Contents of ”getQuote.h”:
typedef char *xsd string;
typedef float xsd float;
int ns1 getQuote(xsd string symbol, xsd float & return);

Or, alternatively with a response struct:

// Contents of ”getQuote.h”:
typedef char *xsd string;
typedef float xsd float;
struct ns1 getQuoteResponse {xsd float return;};
int ns1 getQuote(xsd string symbol, struct ns1 getQuoteResponse &r);

In this example, return is an anonymous output parameter. As a consequence, the service response
to a request made by a client created with gSOAP using this header file specification may include
any name for the output parameter in the SOAP payload. The input parameters may also be
anonymous. This affects the implementation of Web services in gSOAP and the matching of
parameter names by the service.

Caution: when anonymous parameter names are used, the order of the parameters in the function
prototype of a remote method is significant.

25

6.1.14 How to Specify a Method with No Input Parameters

To specify a remote method that has no input parameters, just provide a function prototype with
one parameter which is the output parameter. However, some C/C++ compilers (notably Visual
C++TM) will not compile and complain about an empty struct. This struct is generated by gSOAP
to contain the SOAP request message. To fix this, provide one input parameter of type void*

(gSOAP can not serialize void* data). For example:

struct ns3 SOAPService
{

public:
int ID;
char *name;
char *owner;
char *description;
char *homepageURL;
char *endpoint;
char *SOAPAction;
char *methodNamespaceURI;
char *serviceStatus;
char *methodName;
char *dateCreated;
char *downloadURL;
char *wsdlURL;
char *instructions;
char *contactEmail;
char *serverImplementation;
};
struct ArrayOfSOAPService {struct ns3 SOAPService * ptr; int size;};
int ns getAllSOAPServices(void * , struct ArrayOfSOAPService & return);

The ns getAllSOAPServices method has one void* input parameter which is ignored by the serializer
to produce the request message.

Most C/C++ compilers allow empty structs and therefore the void* parameter is not required.

6.1.15 How to Specify a Method with No Output Parameters

To specify a remote method that has no output parameters, just provide a function prototype with
a response struct that is empty. For example:

enum ns event { off, on, stand by };
int ns signal(enum ns event in, struct ns signalResponse { } *out);

Since the response struct is empty, no output parameters are specified. Most C/C++ compilers
allow empty structs. For those that don’t, use a void* parameter in the struct. This parameter is
not (de)serialized.

Some SOAP resources refer to SOAP RPC with empty responses as one way SOAP messaging.
However, we refer to one-way massaging by asynchronous explicit send and receive operations as
described in Section 6.3. We found this view of one-way SOAP messaging more useful by providing
a message passing alternative to SOAP RPC.

26

6.2 How to Use the gSOAP Stub and Skeleton Compiler to Build SOAP Web
Services

The gSOAP stub and skeleton compiler generates skeleton routines in C++ source form for each
of the remote methods specified as function prototypes in the header file processed by the gSOAP
compiler. The skeleton routines can be readily used to implement the remote methods in a new
SOAP Web service. The compound data types used by the input and output parameters of SOAP
remote methods must be declared in the header file, such as structs, classes, arrays, and pointer-
based data structures (graphs) that are used as the data types of the parameters of a remote method.
The gSOAP compiler automatically generates serializers and deserializers for the data types to
enable the generated skeleton routines to encode and decode the contents of the parameters of the
remote methods. The gSOAP compiler also generates a remote method request dispatcher routine
that will serve requests by calling the appropriate skeleton when the SOAP service application is
installed as a CGI application on a Web server.

6.2.1 Example

The following example specifies three remote methods to be implemented by a new SOAP Web
service:

// Contents of file ”calc.h”:
typedef double xsd double;
int ns add(xsd double a, xsd double b, xsd double &result);
int ns sub(xsd double a, xsd double b, xsd double &result);
int ns sqrt(xsd double a, xsd double &result);

The add and sub methods are intended to add and subtract two double floating point numbers
stored in input parameters a and b and should return the result of the operation in the result output
parameter. The qsrt method is intended to take the square root of input parameter a and to return
the result in the output parameter result. The xsd double type is recognized by the gSOAP compiler
as the xsd:double XML schema data type. The use of typedef is a convenient way to associate
primitive C types with primitive XML schema data types.

To generate the skeleton routines, the gSOAP compiler is invoked from the command line with:

soapcpp2 calc.h

The compiler generates the skeleton routines for the add, sub, and sqrt remote methods specified
in the calc.h header file. The skeleton routines are respectively, soap serve ns add, soap serve ns sub,
and soap serve ns sqrt and saved in the file soapServer.cpp. The generated file soapC.cpp contains
serializers and deserializers for the skeleton. The compiler also generates a service dispatcher:
the soap serve function handles client requests on the standard input stream and dispatches the
remote method requests to the appropriate skeletons to serve the requests. The skeleton in turn
calls the remote method implementation function. The function prototype of the remote method
implementation function is specified in the header file that is input to the gSOAP compiler.

Here is an example Calculator service application that uses the generated soap serve routine to
handle client requests:

27

// Contents of file ”calc.cpp”:
#include ”soapH.h”
#include <math.h> // for sqrt()
main()
{

soap serve(soap new()); // use the remote method request dispatcher
}
// Implementation of the ”add” remote method:
int ns add(struct soap *soap, double a, double b, double &result)
{

result = a + b;
return SOAP OK;

}
// Implementation of the ”sub” remote method:
int ns sub(struct soap *soap, double a, double b, double &result)
{

result = a - b;
return SOAP OK;

}
// Implementation of the ”sqrt” remote method:
int ns sqrt(struct soap *soap, double a, double &result);
{

if (a >= 0)
{

result = sqrt(a);
return SOAP OK;

}
else

return soap receiver fault(soap, ”Square root of negative number”, ”I can only take the square
root of a non-negative number”);
}
// As always, a namespace mapping table is needed:
struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”}
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/1999/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/1999/XMLSchema”},
{”ns”, ”urn:simple-calc”}, // bind ”ns” namespace prefix
{NULL, NULL}
};

Note that the remote methods have an extra input parameter which is a pointer to the gSOAP
runtime environment. The implementation of the remote methods MUST return a SOAP error code.
The code SOAP OK denotes success, while SOAP FAULT denotes an exception with details that can be
defined by the user. The exception description can be assigned to the soap->fault->faultstring string
and details can be assigned to the soap->fault->detail string. This is SOAP 1.1 specific. SOAP
1.2 requires the soap->fault->SOAP ENV Reason and the soap->fault->SOAP ENV Detail strings to
be assigned. Better is to use the soap receiver fault function that allocates a fault struct and sets
the SOAP Fault string and details regardless of the SOAP 1.1 or SOAP 1.2 version used. The
soap receiver fault function returns SOAP FAULT, i.e. an application-specific fault. The fault exception
will be passed on to the client of this service.

28

This service application can be readily installed as a CGI application. The service description
would be:

Endpoint URL: the URL of the CGI application
SOAP action: ”” (2 quotes)
Remote method namespace: urn:simple-calc
Remote method name: add

Input parameters: a of type xsd:double and b of type xsd:double
Output parameter: result of type xsd:double

Remote method name: sub
Input parameters: a of type xsd:double and b of type xsd:double
Output parameter: result of type xsd:double

Remote method name: sqrt
Input parameter: a of type xsd:double
Output parameter: result of type xsd:double or a SOAP Fault

The soapcpp2 compile generates a WSDL file for this service, see Section 6.2.5.

Unless the CGI application inspects and checks the environment variable SOAPAction which contains
the SOAP action request by a client, the SOAP action is ignored by the CGI application. SOAP
actions are specific to the SOAP protocol and provide a means for routing requests and for security
reasons (e.g. firewall software can inspect SOAP action headers to grant or deny the SOAP request.
Note that this requires the SOAP service to check the SOAP action header as well to match it with
the remote method.)

The header file input to the gSOAP compiler does not need to be modified to generate client stubs
for accessing this service. Client applications can be developed by using the same header file as for
which the service application was developed. For example, the soap call ns add proxy is available
from the soapClient.cpp file after invoking the gSOAP compiler on the calc.h header file. As a result,
client and service applications can be developed without the need to know the details of the SOAP
encoding used.

6.2.2 How to Create a Stand-Alone gSOAP Service

The deployment of a Web service as a CGI application is an easy means to provide your service
on the Internet. gSOAP services can also run as stand-alone services on any port by utilizing
the built-in HTTP and TCP/IP stacks. The stand-alone services can be run on port 80 thereby
providing Web server capabilities restricted to SOAP RPC.

To create a stand-alone service, only the main routine of the service needs to be modified as follows.
Instead of just calling the soap serve routine, the main routine is changed into:

int main()
{

struct soap soap;
int m, s; // master and slave sockets
soap init(&soap);
m = soap bind(&soap, "machine.cs.fsu.edu", 18083, 100);
if (m < 0)

soap print fault(&soap, stderr);
else
{

29

fprintf(stderr, "Socket connection successful: master socket = %d\n", m);
for (int i = 1; ; i++)
{

s = soap accept(&soap);
if (s < 0)
{

soap print fault(&soap, stderr);
break;
}
fprintf(stderr, "%d: accepted connection from IP=%d.%d.%d.%d socket=%d", i,

(soap.ip<<24)&0xFF, (soap.ip<<16)&0xFF, (soap.ip<<8)&0xFF, soap.ip&0xFF, s);
soap serve(&soap); // process RPC request
fprintf(stderr, "request served\n");
soap destroy(&soap); // clean up class instances
soap end(&soap); // clean up everything and close socket
}

}
soap done(&soap); // close master socket

}

The gSOAP functions that can be used are:

Function Description
soap init(struct soap *soap) Initializes gSOAP runtime environment (required

once)
soap bind(struct soap *soap, char *host, int port,
int backlog)

Returns master socket (backlog = max. queue size
for requests). When host==NULL: host is the ma-
chine on which the service runs

soap accept(struct soap *soap) Returns slave socket
soap end(struct soap *soap) Clean up deserialized data (except class instances)

and temporary data
soap free(struct soap *soap) Clean up temporary data only
soap destroy(struct soap *soap) Clean up deserialized class instances
soap done(struct soap *soap) Reset: close master/slave sockets and remove call-

backs
(see Section 13.7

The host name in soap bind may be NULL to indicate that the current host should be used.

The soap.accept timeout attribute of the gSOAP run-time environment specifies the timeout value for
a non-blocking soap accept(&soap) call. See Section 13.15 for more details on timeout management.

See Section 7.11 for more details on memory management.

A client application connects to this stand-alone service with the endpoint machine.cs.fsu.edu:18083.
A client may use the http:// prefix. When absent, no HTTP header is send and no HTTP-based
information will be communicated to the service.

6.2.3 How to Create a Multi-Threaded Stand-Alone Service

Multi-threading a Web Service is essential when the response times for handling requests by the
service are (potentially) long or when keep-alive is enabled, see Section 13.10. In case of long

30

response times, the latencies introduced by the unrelated requests may become prohibitive for a
successful deployment of a stand-alone service. When HTTP keep-alive is enabled, a client may
not close the socket on time, thereby preventing other clients from connecting.

gSOAP 2.0 and higher is thread safe and supports the implementation of multi-threaded stand-alone
services in which a thread is used to handle a request.

Here is an example of a multi-threaded Web Service:

#include ”soapH.h”
#include <pthread.h>
#define BACKLOG (100) // Max. request backlog
#define MAX THR (8) // Max. threads to serve requests
int main(int argc, char **argv)
{

structsoap soap;
soap init(&soap);
if (argc < 3) // no args: assume this is a CGI application
{

soap serve(&soap); // serve request, one thread, CGI style
soap end(&soap); // cleanup
}
else
{

struct soap *soap thr[MAX THR]; // each thread needs a runtime environment
pthread t tid[MAX THR];
char *host = argv[1];
int port = atoi(argv[2]);
int m, s, i;
m = soap bind(&soap, host, port, BACKLOG);
if (m < 0)

exit(1);
fprintf(stderr, "Socket connection successful %d\n", m);
for (i = 0; i < MAX THR; i++)

soap thr[i] = NULL;
for (;;)
{

for (i = 0; i < MAX THR; i++)
{

s = soap accept(&soap);
if (s < 0)

break;
fprintf(stderr, "Thread %d accepts socket %d connection from IP %d.%d.%d.%d\n",

i, s, (soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF);
if (!soap thr[i]) // first time around
{

soap thr[i] = soap new();
if (!soap thr[i])
exit(1); // could not allocate
}
else // recycle soap environment
{

pthread join(tid[i], NULL);
fprintf(stderr, ”Thread %d completed\n”, i);

31

soap end(soap thr[i]); // deallocate data of old thread
}
soap thr[i]->socket = s;
pthread create(&tid[i], NULL, (void*(*)(void*))soap serve, (void*)soap thr[i]);
}
}

}
return 0;
}

The example illustrates the use of threads to improve the quality of service by handling new
requests in separate threads. Each thread needs a separate runtime environment. The example
above requires threads to synchronize at some point, so runaway processes can be halted (not shown
in the code). The next example detaches threads. No attempt is made to synchronize threads.

#include ”soapH.h”
#include <pthread.h>
#define BACKLOG (100) // Max. request backlog
int main(int argc, char **argv)
{

struct soap soap;
soap init(&soap);
if (argc < 3) // no args: assume this is a CGI application
{

soap serve(&soap); // serve request, one thread, CGI style
soap end(&soap); // cleanup
}
else
{

void *process request(void*);
struct soap *tsoap;
pthread t tid;
char *host = argv[1];
int port = atoi(argv[2]);
int m, s;
m = soap bind(&soap, host, port, BACKLOG);
if (m < 0)

exit(1);
fprintf(stderr, "Socket connection successful %d\n", m);
for (;;)
{

s = soap accept(&soap);
if (s < 0)

break;
fprintf(stderr, "Thread %d accepts socket %d connection from IP %d.%d.%d.%d\n",

i, s, (soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF);
tsoap = soap copy(&soap); // make a safe copy
if (!tsoap)

break;
pthread create(&tid, NULL, (void*(*)(void*))process request, (void*)tsoap);
}
}
return 0;

32

}
void *process request(void *soap)
{

pthread detach(pthread self());
soap serve((struct soap*)soap);
soap end((struct soap*)soap);
free(soap);
return NULL;
}

The following functions can be used to setup a gSOAP runtime environment (struct soap):

Function
Description

soap init(struct soap *soap) Initializes a runtime environment (required only once)
struct soap *soap new() Allocates, initializes, and returns a pointer to a runtime

environment
struct soap *soap copy(struct soap *soap) Allocates a new runtime invironment and copies contents

of the argument environment such that the new environ-
ment does not share data with the argument environment

soap done(struct soap *soap) Reset, close communications, and remove callbacks

A new environment is required for each new thread to guarantee exclusive access to runtime envi-
ronments by threads.

For clean termination of the server, the master socket can be closed and callbacks removed with
soap done(struct soap *soap).

6.2.4 Some Web Service Implementation Issues

The same client header file specification issues apply to the specification and implementation of a
SOAP Web service. Refer to

• 6.1.2 for namespace considerations.

• 6.1.5 for an explanation on how to change the encoding of the primitive types.

• 6.1.7 for a discussion on how the response element format can be controlled.

• 6.1.9 for details on how to pass multiple output parameters from a remote method.

• 6.1.11 for passing complex data types as output parameters.

• 6.1.13 for anonymizing the input and output parameter names.

6.2.5 How to Generate WSDL Service Descriptions

The gSOAP stub and skeleton compiler soapcpp2 generates WSDL (Web Service Description Lan-
guage) service descriptions and XML schema files when processing a header file. The compiler
produces one WSDL file for a set of remote methods. The names of the function prototypes of the
remote methods must use the same namespace prefix and the namespace prefix is used to name the

33

WSDL file. If multiple namespace prefixes are used to define remote methods, multiple WSDL files
will be created and each file describes the set of remote methods belonging to a namespace prefix.

In addition to the generation of the ns.wsdl file, a file with a namespace mapping table is generated
by the gSOAP compiler. An example mapping table is shown below:

struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”, ḧttp://www.w3.org/*/XMLSchema-

instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”, ḧttp://www.w3.org/*/XMLSchema”},
{”ns”, ”http://tempuri.org”},
{NULL, NULL}

};

This file can be incorporated in the client/service application, see Section 8.4 for details on names-
pace mapping tables.

To deploy a Web service, copy the compiled CGI service application to the designated CGI direc-
tory of your Web server. Make sure the proper file permissions are set (chmod 755 calc.cgi for
Unix/Linux). You can then publish the WSDL file on the Web by placing it in the appropriate
Web server directory.

The gSOAP compiler also generates XML schema files for all C/C++ complex types (e.g. structs
and classes) when declared with a namespace prefix. These files are named ns.xsd, where ns is the
namespace prefix used in the declaration of the complex type. The XML schema files do not have
to be published as the WSDL file already contains the appropriate XML schema definitions.

6.2.6 Example

For example, suppose the following methods are defined in the header file:

typedef double xsd double;
int ns add(xsd double a, xsd double b, xsd double &result);
int ns sub(xsd double a, xsd double b, xsd double &result);
int ns sqrt(xsd double a, xsd double &result);

Then, one WSDL file will be created with the file name ns.wsdl that describes all three remote
methods:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Service"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://location/Service.wsdl"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

34

xmlns:tns="http://location/Service.wsdl"
xmlns:ns="http://tempuri.org">

<types>
<schema
xmlns="http://www.w3.org/2000/10/XMLSchema"
targetNamespace="http://tempuri.org"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<complexType name="addResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="1"/>

</all>
<anyAttribute namespace="##other"/>

</complexType>
<complexType name="subResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="1"/>

</all>
<anyAttribute namespace="##other"/>

</complexType>
<complexType name="sqrtResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="1"/>

</all>
<anyAttribute namespace="##other"/>

</complexType>
</schema>

</types>
<message name="addRequest">
<part name="a" type="xsd:double"/>
<part name="b" type="xsd:double"/>

</message>
<message name="addResponse">
<part name="result" type="xsd:double"/>

</message>
<message name="subRequest">
<part name="a" type="xsd:double"/>
<part name="b" type="xsd:double"/>

</message>
<message name="subResponse">
<part name="result" type="xsd:double"/>

</message>
<message name="sqrtRequest">
<part name="a" type="xsd:double"/>

</message>
<message name="sqrtResponse">
<part name="result" type="xsd:double"/>

</message>
<portType name="ServicePortType">
<operation name="add">
<input message="tns:addRequest"/>
<output message="tns:addResponse"/>

</operation>

35

<operation name="sub">
<input message="tns:subRequest"/>
<output message="tns:subResponse"/>

</operation>
<operation name="sqrt">
<input message="tns:sqrtRequest"/>
<output message="tns:sqrtResponse"/>

</operation>
</portType>
<binding name="ServiceBinding" type="tns:ServicePortType">
<SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="add">
<SOAP:operation soapAction="http://tempuri.org#add"/>
<input>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>
<operation name="sub">
<SOAP:operation soapAction="http://tempuri.org#sub"/>
<input>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>
<operation name="sqrt">
<SOAP:operation soapAction="http://tempuri.org#sqrt"/>
<input>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="Service">
<port name="ServicePort" binding="tns:ServiceBinding">
<SOAP:address location="http://location/Service.cgi"/>

</port>
</service>
</definitions>

36

6.2.7 How to Import WSDL Service Descriptions

Note: see README.txt in the wsdlcpp directory for installation instructions for the importer.

The creation of SOAP Web Service clients from a WSDL service description is a two-step process.

First, execute java wsdlcpp file.wsdl which generates the a header file file.h and a C-source file file.c

with an example client program template. Modify the client program template to your needs. Use
java wsdlcpp -c file.wsdl to generate C-only code.

Second, the header file file.h is to be processed by the gSOAP compiler by executing soapcpp2 file.h.
This creates the C/C++ source files to build a client application, see 6.1. In addition, this generates
a client proxy object declared in soapServiceProxy.h, where Service is the name of the service defined
in the WSDL. To use this object, include the soapServiceProxy.h and Service.nsmap files in your C++
client application. The Service class provides the remote Web service methods as class members.

6.2.8 How to Use Client Functionalities Within a Service

A gSOAP service may make client calls to other services from within its remove methods. This
is best illustrated with an example. The following example is a more sophisticated example that
combines the functionality of two Web services into one new SOAP Web service. The service
provides a currency-converted stock quote. To serve a request, the service in turn requests the
stock quote and the currency-exchange rate from two XMethods services.

In addition to being a client of two XMethods services, this service application can also be used as a
client of itself to test the implementation. As a client invoked from the command-line, it will return
a currency-converted stock quote by connecting to a copy of itself installed as a CGI application
on the Web to retrieve the quote after which it will print the quote on the terminal.

The header file input to the gSOAP compiler is given below:

// Contents of file ”quotex.h”:
int ns1 getQuote(char *symbol, float &result); // XMethods delayed stock quote service remote
method
int ns2 getRate(char *country1, char *country2, float &result); // XMethods currency-exchange
service remote method
int ns3 getQuote(char *symbol, char *country, float &result); // the new currency-converted
stock quote service

The quotex.cpp client/service application source is:

// Contents of file ”quotex.cpp”:
#include ”soapH.h” // include generated proxy and SOAP support
int main(int argc, char **argv)
{

struct soap soap;
float q;
soap init(&soap);
if (argc ¡= 2)

soap serve();
else if (soap call ns3 getQuote(&soap, "http://www.cs.fsu.edu/~engelen/quotex.cgi",

NULL, argv[1], argv[2], q))

37

soap print fault(&soap, stderr);
else

printf("\nCompany %s: %f (%s)\n", argv[1], q, argv[2]);
return 0;
}
int ns3 getQuote(struct soap *soap, char *symbol, char *country, float &result)
{

float q, r;
if (soap call ns1 getQuote(soap, "http://services.xmethods.net/soap", NULL, symbol, q)

== 0 &&
soap call ns2 getRate(soap, "http://services.xmethods.net/soap", NULL, "us", coun-

try, r) == 0)
{

result = q*r;
return SOAP OK;
}
else

return SOAP FAULT; // pass soap fault messages on to the client of this app
}
/* Since this app is a combined client-server, it is put together with
one header file that describes all remote methods. However, as a consequence we
have to implement the methods that are not ours. Since these implementations are
never called (this code is client-side), we can make them dummies as below.
/
int ns1 getQuote(structsoap *soap, char *symbol, float &result)
{ return SOAP NO METHOD; } // dummy: will never be called
int ns2 getRate(structsoap *soap, char *country1, char *country2, float &result)
{ return SOAP NO METHOD; } // dummy: will never be called

struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”, ”http://www.w3.org/*/XMLSchema-

instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”, ”http://www.w3.org/*/XMLSchema”},
{”ns1”, ”urn:xmethods-delayed-quotes”},
{”ns2”, ”urn:xmethods-CurrencyExchange”},
{”ns3”, ”urn:quotex”},
{NULL, NULL}
};

To compile:

soapcpp2 quotex.h
g++ -o quotex.cgi quotex.cpp soapC.cpp soapClient.cpp soapServer.cpp stdsoap2.cpp -lsocket -lxnet
-lnsl

Note: under Linux and Mac OS X you can often omit the -l libraries.

The quotex.cgi executable is installed as a CGI application on the Web by copying it in the designated
directory specific to your Web server. After this, the executable can also serve to test the service.
For example

38

quotex.cgi AOL uk

returns the quote of AOL in uk pounds by communicating the request and response quote from
the CGI application. See http://xmethods.com/detail.html?id=5 for details on the currency
abbreviations.

When combining clients and service functionalities, it is required to use one header file input to
the compiler. As a consequence, however, stubs and skeletons are available for all remote methods,
while the client part will only use the stubs and the service part will use the skeletons. Thus,
dummy implementations of the unused remote methods need to be given which are never called.

Three WSDL files are created by gSOAP: ns1.wsdl, ns2.wsdl, and ns3.wsdl. Only the ns3.wsdl file
is required to be published as it contains the description of the combined service, while the others
are generated as a side-effect (and in case you want to develop these separate services).

6.3 How to Use gSOAP for Asynchronous One-Way Message Passing

SOAP RPC client-server interaction is synchonous: the client blocks until the server responds to the
request. gSOAP also supports asynchronous one-way message passing. SOAP messaging routines
are declared as function prototypes, just like remote methods for SOAP RPC. However, the output
parameter is a void type to indicate the absence of a return value.

For example, the following header file specifies a event message for SOAP messaging:

int ns event(int eventNo, void dummy);

The gSOAP stub and skeleton compiler generates the following functions in soapClient.cpp:

int soap send ns event(struct soap *soap, const char URL, const char action, int event);
int soap recv ns event(struct soap *soap, struct ns event *dummy);

The soap send ns event function transmits the message to the destination URL by opening a socket
and sending the SOAP encoded message. The socket will remain open after the send and has to
be closed with soap closesock(). The open socket connection can also be used to obtain a service
response, e.g. with a soap recv function call.

The soap recv ns event function waits for a SOAP message on the currently open socket (soap.socket)
and fills the struct ns event with the ns event parameters (e.g. int eventNo). The struct ns event is
automatically created by gSOAP and is a mirror image of the ns event parameters:

struct ns event
{ int eventNo;
}

The gSOAP generated soapServer.cpp code includes a skeleton routine to accept the message. (The
skeleton routine does not respond with a SOAP response message.)

int soap serve ns event(struct soap *soap);

39

The skeleton routine calls the user-implemented ns event(struct soap *soap, int eventNo) routine (note
tha absence of the void parameter!).

As usual, the skeleton will be automatically called by the remote method request dispatcher that
handles both the remote method requests (RPCs) and messages:

main()
{ soap serve(soap new());
}
int ns event(struct soap *soap, int eventNo)
{

... // handle event
return SOAP OK;

}

6.4 How to Use the SOAP Serializers and Deserializers to Save and Load Ap-
plication Data

The gSOAP stub and skeleton compiler generates serializers and deserializers for all user-defined
data structures that are specified in the header file input to the compiler. The serializers and
deserializers can be found in the generated soapC.cpp file. These serializers and deserializers can
be used separately by an application without the need to build a full client or service application.
This is useful for applications that need to save or export their data in XML or need to import or
load data stored in XML format.

The following attributres can be set to control the destination and source for serialization and
deserialization:

Variable Description
soap.socket socket file descriptor for input and output or -1
soap.sendfd when soap socket<0 this is the file descriptor used for send operations
soap.recvfd when soap socket<0 this is the file descriptor used for receive operations

The following initializing and finalizing functions can be used:

Function Description
void soap begin send(struct soap*) start a send/write phase
int soap end send(struct soap*) flush the buffer
int soap begin recv(struct soap*) start a rec/read phase (if an HTTP header is present, parse it first)
int soap end recv(struct soap*) perform a id/href consistancy check on deserialized data

These operations do not open or close the connections. The application should open and close
connections or files and set the soap.socket, soap.sendfd, soap.recvfd descriptors.

See also Section 7.10 to control the I/O buffering and content encoding such as compression and
DIME encoding.

6.4.1 Serializing a Data Type

To serialize a data type, two functions need to be called to process the data. The first function
(soap serialize) analyzes pointers and determines if multi-references are required to encode the data

40

and if the data contains cycles. The second function (soap put) generates the SOAP encoding output
for that data type.

The function names are specific to a data type. For example, soap serialize float(&soap, &d) is called to
serialize an float value and soap put float(&soap, &d, ”number”, NULL) is called to output the floating
point value in SOAP tagged with the name <number>. To initialize data, the soap default function of
a data type can be used. For example, soap default float(&soap, &d) initializes the float to 0.0. The
soap default functions are useful to initialize complex data types such as arrays, structs, and class

instances. Note that the soap default functions do not need the gSOAP runtime environment as a
first parameter.

The following table lists the type naming conventions used by gSOAP:

Type Type Name
char* string
wchar t* wstring
char byte
bool bool
double double
int int
float float
long long
LONG64 LONG64 (Win32)
long long LONG64 (Unix/Linux)
short short
time t time
unsigned char unsignedByte
unsigned int unsignedInt
unsigned long unsignedLong
ULONG64 unsignedLONG64 (Win32)
unsigned long long unsignedLONG64 (Unix/Linux)
unsigned short unsignedShort
T[N] ArrayNOfType where Type is the type name of T
T* PointerToType where Type is the type name of T
struct Name Name
class Name Name
enum Name Name

Consider for example the following declaration of p as a pointer to a struct ns Person:

struct ns Person { char *name; } *p;

To serialize p, its address is passed to the function soap serialize PointerTons Person generated for this
type by the gSOAP compiler:

soap serialize PointerTons Person(&soap, &p);

The address of p is passed, so the serializer can determine whether p was already serialized and to
discover cycles in graph data structures. To generate the output, the address of p is passed to the
function soap put PointerTons Person together with the name of an XML element and an optional
type string (to omit a type, use NULL):

soap put PointerTons Person(&soap, &p, ”ns:element-name”, ”ns:type-name”);

41

This produces:

<ns:element-name xmlns:SOAP-ENV="..." xmlns:SOAP-ENC="..." xmlns:ns="..."
... xsi:type="ns:type-name">

<name xsi:type="xsd:string">...</name>
</ns:element-name>

The serializer is initialized with the soap begin function. All temporary data structures and data
structures deserialized on the heap are destroyed with the soap end() function. The soap free()

function can be used to remove the temporary data only and keep the deserialized data on the
heap. Temporary data structures are only created if the encoded data uses pointers. Each pointer
in the encoded data has an internal hash table entry to determine all multi-reference parts and
cyclic parts of the complete data structure.

If more than one data structure is to be serialized and parts of those data structures are shared
through pointers, then the soap serialize functions MUST to be called first before any of the soap put

functions. This is necessary to ensure that multi-reference data shared by the data structures is
encoded as multi-reference.

For example, to encode the contents of two variables var1 and var2 the serializers are called before
the output routines:

T1 var1;
T2 var2;
struct soap soap;
...
soap init(&soap); // initialize
[soap omode(&soap, flags);] // set output-mode flags
soap begin(&soap); // start new (de)serialization phase
soap set omode(&soap, SOAP XML GRAPH);
soap serialize Type1(&soap, &var1);
soap serialize Type2(&soap, &var2);
...
[soap.socket = a socket file descriptor;]
[soap.sendfd = an output file descriptor;]
soap begin send(&soap);
soap put Type1(&soap, &var1, ”[namespace-prefix:]element-name1”, ”[namespace-prefix:]type-name1”);

soap put Type2(&soap, &var2, ”[namespace-prefic:]element-name2”, ”[namespace-prefix:]type-name2”);
...
soap end send(&soap); // flush
soap end(&soap); // remove temporary data structures after phase
soap done(&soap); // finalize last use of this environment
...

where Type1 is the type name of T1 and Type2 is the type name of T2 (see table above). The
strings [namespace-prefix:]type-name1 and [namespace-prefix:]type-name2 describe the schema types of the
elements. Use NULL to omit this type information. The output stream is set by the assignment to
soap.sendfd.

For serializing class instances, method invocations MUST be used instead of function calls, for
example var.soap serialize(&soap) and var.soap put(&soap, ”elt”, ”type”). This ensures that the proper
serializers are used for serializing instances of derived classes.

42

In principle, encoding MAY take place without calling the soap serialize functions. However, as the
following example demonstrates the resulting encoding is not SOAP 1.1 compliant. However, the
messages can still be used with gSOAP to save and restore data in XML.

Consider the following struct:

// Contents of file ”tricky.h”:
struct Tricky
{

int *p;
int n;
int *q;

};

The following fragment initializes the pointer fields p and q to the value of field n:

struct soap soap;
struct Tricky X;
X.n = 1;
X.p = &X.n;
X.q = &X.n;
soap init(&soap);
soap begin(&soap);
soap serialize Tricky(&soap, &X);
soap put Tricky(&soap, &X, "Tricky", NULL);
soap end(&soap); // Clean up temporary data used by the serializer

The resulting output is:

<Tricky xsi:type="Tricky">
<p href="#2"/> <n xsi:type="int">1</n> <q href="#2"/> <r xsi:type="int">2</r> </Tricky>
<id id="2" xsi:type="int">1</id>

which uses an independent element at the end to represent the multi-referenced integer.

To preserve the exact structure of the data and create XML with one root, use the SOAP XML GRAPH

flag to serialize the data in XML (see Section 7.10) to serialize multi-referenced data embedded in
the structure which assures the preservation of structure but is not SOAP 1.1 compliant. To save
the data as an XML tree (with one root) use the SOAP XML TREE flag.

For example, the resulting output is:

<Tricky xsi:type="Tricky">
<p href="#2"/> <n id="2" xsi:type="int">1</n> <q href="#2"/> </Tricky>

In this case, the XML is self-contained and multi-referenced data is accurately serialized. The
gSOAP generated deserializer for this data type will be able to accurately reconstruct the data
from the XML (on the heap).

6.4.2 Deserializing a Data Type

To deserialize a data type, its soap get function is used. The outline of a program that deserializes
two variables var1 and var2 is for example:

43

T1 var1;
T2 var2;
struct soap soap;
...
soap init(&soap); // initialize at least once
[soap imode(&soap, flags);] // set input-mode flags
soap begin(&soap); // begin new decoding phase
[soap.recvfd = an input stream;]
soap begin recv(&soap); // if HTTP header is present, parse it
if (!soap get Type1(&soap, &var1, ”[namespace-prefix:]element-name1”, ”[namespace-prefix:]type-
name1”))

... error ...
if (!soap get Type2(&soap, &var2, ”[namespace-prefix:]element-name2”, ”[namespace-prefix:]type-
name1”))

... error ...
...
soap end recv(&soap); // check consistancy of id/hrefs
soap destroy(&soap); // remove deserialized class instances
soap end(&soap); // remove temporary data, including the decoded data on the heap
soap done(&soap); // finalize last use of the environment

The strings [namespace-prefix:]type-name1 and [namespace-prefix:]type-name2 are the schema types of the
elements and should match the xsi:type attribute of the receiving message. To omit the match,
use NULL as the type. For class instances, method invocation can be used instead of a function call
if the object is already instantiated, i.e. obj.soap get(&soap, ”...”, ”...”).

The soap begin call resets the deserializers. The soap destroy and soap end calls remove the temporary
data structures and the decoded data that was placed on the heap.

To remove temporary data while retaining the deserialized data on the heap, the function soap free

should be called instead of soap destroy and soap end.

One call to the soap get Type function of a type Type scans the entire input to process its XML
content and to capture SOAP 1.1 independent elements (which contain multi-referenced objects).
As a result, soap.error will set to SOAP EOF. Also storing multiple objects into one file will fail to
decode them properly with multiple soap get calls. A well-formed XML document should only have
one root anyway, so don’t save multiple objects into one file. If you must save multiple objects,
create a linked list or an array of objects and save the linked list or array. You could use the
soap in Type function instead of the soap get Type function. The soap in Type function parses one
XML element at a time.

6.4.3 Example

As an example, consider the following data type declarations:

// Contents of file ”person.h”:
typedef char *xsd string;
typedef char *xsd Name;
typedef unsigned int xsd unsignedInt;
enum ns Gender {male, female};
class ns Address
{

44

public:
xsd string street;
xsd unsignedInt number;
xsd string city;
};
class ns Person
{

public:
xsd Name name;
enum ns Gender gender;
ns Address address;
ns Person *mother;
ns Person *father;

};

The following program uses these data types to write to standard output a data structure that
contains the data of a person named ”John” living at Dowling st. 10 in Londen. He has a mother
”Mary” and a father ”Stuart”. After initialization, the class instance for ”John” is serialized and
encoded in XML to the standard output stream using gzip compression (requires the Zlib library,
compile sources with -DWITH GZIP):

// Contents of file ”person.cpp”:
#include ”soapH.h”
int main()
{

struct soap soap;
ns Person mother, father, john;
mother.name = "Mary";
mother.gender = female;
mother.address.street = "Dowling st.";
mother.address.number = 10;
mother.address.city = "London";
mother.mother = NULL;
mother.father = NULL;
father.name = "Stuart";
father.gender = male;
father.address.street = "Main st.";
father.address.number = 5;
father.address.city = "London";
father.mother = NULL;
father.father = NULL;
john.name = "John";
john.gender = male;
john.address = mother.address;
john.mother = &mother;
john.father = &father;
soap init(&soap);
soap omode(&soap, SOAP ENC ZLIB|SOAP XML GRAPH); // see 7.10
soap begin(&soap);
soap begin send(&soap);
john.soap serialize(&soap);
john.soap put(&soap, "johnnie", NULL);
soap end send(&soap);

45

soap end(&soap);
soap done(&soap);

}
struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”,”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/1999/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/1999/XMLSchema”},
{”ns”, ”urn:person”}, // Namespace URI of the “Person” data type
{NULL, NULL}
};

The header file is processed and the application compiled on Linux/Unix with:

soapcpp2 person.h
g++ -DWITH GZIP -o person person.cpp soapC.cpp stdsoap2.cpp -lsocket -lxnet -lnsl -lz

(Depending on your system configuration, the libraries libsocket.a, libxnet.a, libnsl.a are required.
Compiling on Linux typically does not require the inclusion of those libraries.) See 13.20 for details
on compression with gSOAP.

Running the person application results in the compressed XML output:

<johnnie xsi:type="ns:Person" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:ns="urn:person"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<name xsi:type="xsd:Name">John</name>
<gender xsi:type="ns:Gender">male</gender>
<address xsi:type="ns:Address">
<street id="3" xsi:type="xsd:string">Dowling st.</street>
<number xsi:type="unsignedInt">10</number>
<city id="4" xsi:type="xsd:string">London</city>
</address>
<mother xsi:type="ns:Person">
<name xsi:type="xsd:Name">Mary</name>
<gender xsi:type="ns:Gender">female</gender>
<address xsi:type="ns:Address">
<street href="#3"/>
<number xsi:type="unsignedInt">5</number>
<city href="#4"/>
</address>
</mother>
<father xsi:type="ns:Person">
<name xsi:type="xsd:Name">Stuart</name>
<gender xsi:type="ns:Gender">male</gender>
<address xsi:type="ns:Address">
<street xsi:type="xsd:string">Main st.</street>
<number xsi:type="unsignedInt">13</number>
<city href="#4"/>

46

</address>
</father>
</johnnie>

The following program fragment decodes this content from standard input and reconstructs the
orignal data structure on the heap:

#include ”soapH.h”
int main()
{

struct soap soap;
ns Person *mother, *father, *john = NULL;
soap init(&soap);
soap imode(&soap, SOAP ENC ZLIB); // optional: gzip is detected automatically
soap begin(&soap);
soap begin recv(&soap);
if (soap get ns Person(&soap, john, ”johnnie”, NULL))

... error ...
mother = john->mother;
father = john->father;
...
soap end recv(&soap);
soap free(&soap); // Clean up temporary data but keep deserialized data

}
struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”,”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/1999/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/1999/XMLSchema”},
{”ns”, ”urn:person”}, // Namespace URI of the “Person” data type
{NULL, NULL}
};

It is REQUIRED to either pass NULL to the soap get routine, or a valid pointer to a data structure
that can hold the decoded content. The following example explicitly passes NULL:

john = soap get ns Person(&soap, NULL, ”johnnie”, NULL);

Note: the second NULL parameter indicates that the schema type attribute of the receiving message
can be ignored. The deserializer stores the SOAP contents on the heap, and returns the address.
The allocated storage is released with the soap end call, which removes all temporary and deserialized
data from the heap, or with the soap free call, which removes all temporary data only.

Alternatively, the XML content can be decoded within an existing allocated data structure. The
following program fragment decodes the SOAP content in a struct ns Person allocated on the stack:

#include ”soapH.h”
main()
{

struct soap soap;

47

ns Person *mother, *father, john;
soap init(&soap);
soap imode(&soap, SOAP ENC ZLIB); // optional
soap begin(&soap);
soap begin recv(&soap);
soap default ns Person(&soap, &john);
if (soap get ns Person(&soap, &john, ”johnnie”, NULL))

... error ...
...
}
struct Namespace namespaces[] =

...

Note the use of soap default ns Person. This routine is generated by the gSOAP stub and skeleton
compiler and assigns default values to the fields of john.

6.4.4 How to Specify Default Values for Omitted Data

The gSOAP compiler generates soap default functions for all data types. The default values of the
primitive types can be easily changed by defining any of the following macros in the stdsoap2.h file:

#define SOAP DEFAULT bool
#define SOAP DEFAULT byte
#define SOAP DEFAULT double
#define SOAP DEFAULT float
#define SOAP DEFAULT int
#define SOAP DEFAULT long
#define SOAP DEFAULT LONG64
#define SOAP DEFAULT short
#define SOAP DEFAULT string
#define SOAP DEFAULT time
#define SOAP DEFAULT unsignedByte
#define SOAP DEFAULT unsignedInt
#define SOAP DEFAULT unsignedLong
#define SOAP DEFAULT unsignedLONG64
#define SOAP DEFAULT unsignedShort
#define SOAP DEFAULT wstring

Instead of adding these to stdsoap2.h, you can also compile with option -DWITH USERDEFS H and
include your definitions in file userdefs.h. The absence of a data value in a receiving SOAP message
will result in the assignment of a default value to a primitive type upon deserialization.

Default values can also be assigned to individual struct and class fields of primitive type. For
example,

struct MyRecord
{

char *name = ”Unknown”;
int value = 9999;
enum Status { active, passive } status = passive;
}

48

Default values are assigned to the fields on receiving a SOAP/XML message in which the data
values are absent.

Because method requests and responses are essentially structs, default values can also be assigned to
method parameters. The default parameter values do not control the parameterization of C/C++
function calls, i.e. all actual parameters must be present when calling a function. The default
parameter values are used in case an inbound request or response message lacks the XML ele-
ments with parameter values. For example, a Web service can use default values to fill-in absent
parameters in a SOAP/XML request:

int ns login(char *username = ”anonymous”, char *password = ”guest”, bool granted);

When the request message lacks username and password parameters, e.g.:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns="http://tempuri.org">
<SOAP-ENV:Body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<ns:login>
</ns:login>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

then the service uses the default values. In addition, the default values will show up in the
SOAP/XML request and response message examples generated by the gSOAP compiler.

7 Using the gSOAP Stub and Skeleton Compiler

The gSOAP stub and skeleton compiler is invoked from the command line and optionally takes the
name of a header file as an argument or, when the file name is absent, parses the standard input:

soapcpp2 [aheaderfile.h]

where aheaderfile.h is a standard C++ header file. The compiler acts as a preprocessor and produces
C++ source files that can be used to build SOAP client and Web service applications in C++.
The files generated by the compiler are:

49

File Name
Description

soapH.h Main header file to be included by all client and service sources
soapC.cpp Serializers and deserializers for the specified data structures
soapClient.cpp Client stub routines and proxies for all remote methods
soapServer.cpp Service skeleton routines
soapStub.h A modified header file produced from the compiler input header file
.xsd An ns.xsd file is generated with an XML schema for each namespace prefix ns used

by a data structure in the header file input to the compiler, see Section 6.2.5
.wsdl A ns.wsdl file is generated with an WSDL description for each namespace prefix ns

used by a remote method in the header file input to the compiler, see Section 6.2.5
.xml Several SOAP/XML request and response files are generated. These are exam-

ple message files are valid provided that sufficient schema namespace directives
are added to the header file or the generated .nsmap namespace table for the
clinet/service is not modified by hand

.nsmap A ns.nsmap file is generated for each namespace prefix ns used by a remote method
in the header file input to the compiler, see Section 6.2.5. The file contains a
namespace mapping table that can be used in the client/service sources

Both client and service applications are developed from a header file that specifies the remote
methods. If client and service applications are developed with the same header file, the applications
are guaranteed to be compatible because the stub and skeleton routines use the same serializers and
deserializers ot encode and decode the parameters. Note that when client and service applications
are developed together, an application developer does not need to know the details of the internal
SOAP encoding used by the client and service.

The following files are part of the gSOAP package and are required to build client and service
applications:

File Name Description
stdsoap2.h Header file of stdsoap2.cpp runtime library
stdsoap2.c Runtime C library with XML parser and run-time support routines
stdsoap2.cpp Runtime C++ library identical to stdsoap2.c

7.1 Compiler Options

The compiler supports the following options:

Option Description
-1 Use SOAP 1.1 namespaces and encodings (default)
-2 Use SOAP 1.2 namespaces and encodings
-h Print a brief usage message
-c Save files using extension .c instead of .cpp
-i Interpret #include and #define directives
-m Generate code that requires array/binary classes to explicitly free malloced array

(to be depricated since soap unlink should be used to keep specific data)
-d <path> Save sources in directory specified by <path>
-p <name> Save sources with file name prefix <name> instead of “soap”

For example

soapcpp2 -cd ’../projects’ -pmy file.h

50

Saves the sources:

../projects/myH.h

../projects/myC.c

../projects/myClient.c

../projects/myServer.c

../projects/myStub.h

MS Windows users can use the usual “/” for options, for example:

soapcpp2 /cd ’..\projects’ /pmy file.h

7.2 SOAP 1.1 Versus SOAP 1.2

gSOAP supports SOAP 1.1 by default. SOAP 1.2 support is automatically turned on when the
appropriate SOAP 1.2 namespace is used in the namespace mapping table:

struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://www.w3.org/2002/06/soap-envelope”},
{”SOAP-ENC”, ”http://www.w3.org/2002/06/soap-encoding”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”, ”http://www.w3.org/*/XMLSchema-

instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”, ”http://www.w3.org/*/XMLSchema”}, ...

}

gSOAP Web services and clients can automatically switch from SOAP 1.1 to SOAP 1.2 by providing
the SOAP 1.2 namespace as a pattern in the third column of a namespace table:

struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”, ”http://www.w3.org/2002/06/soap-

encoding”},
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”, ”http://www.w3.org/2002/06/soap-

envelope”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”, ”http://www.w3.org/*/XMLSchema-

instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”, ”http://www.w3.org/*/XMLSchema”}, ...

}

This way, gSOAP Web services can respond to either SOAP 1.1 or SOAP 1.2 requests.

The gSOAP soapcpp2 compiler generates a .nsmap file with SOAP-ENV and SOAP-ENC namespace
patterns similar to the above. Since clients issue a send first, they will always use SOAP 1.1
for requests when the namespace table is similar as shown above. Clients can accept SOAP 1.2
responses by inspecting the response message. To restrict gSOAP services and clients to SOAP 1.2
and to generate SOAP 1.2 service WSDLs, use soapcpp2 compiler option -2 to generate SOAP 1.2
conformant .nsmap and .wsdl files.

Caution: SOAP 1.2 does not support partially transmitted arrays. So the offset field of a dynamic
array is meaningless.

51

Caution: SOAP 1.2 requires the use of SOAP ENV Code, SOAP ENV Reason, and SOAP ENV Detail

fields in a SOAP ENV Fault fault struct, while SOAP 1.1 uses faultcode, faultstring, and detail fields.
Use soap receiver fault(struct soap *soap, const char *faultstring, const char *detail) to set a SOAP 1.1/1.2
fault at the server-side. Use soap sender fault(struct soap *soap, const char *faultstring, const char *detail)

to set a SOAP 1.1/1.2 unrecoverable Bad Request fault at the server-side.

7.3 The soapdefs.h Header File

The soapdefs.h header file is included in stdsoap2.h when compiling with option -DWITH SOAPDEFS H:

g++ -DWITH SOAPDEFS H -c stdsoap2.cpp

The soapdefs.h file allows users to include definitions and add includes without requiring changes to
stdsoap2.h. For example,

// Contents of soapdefs.h
#include <ostream>
#define SOAP BUFLEN 20480 // use large send/recv buffer

The following header file can now refer to ostream:

extern class ostream; // ostream can’t be (de)serialized, but need to be declared to make it visible
to gSOAP
class ns myClass
{ ...

virtual void print(ostream &s) const; // need ostream here
...

};

See also Section 13.4.

7.4 The gSOAP #import Directive

The #import directive can be used to include gSOAP header files into other gSOAP header files for
processing with soapcpp2. The C #include directive cannot be used to include gSOAP header files.
The #include directive is reserved to control the post-gSOAP compilation process, see 7.5.

An example of the #import directive:

#import ”mydefs.gsoap”
int ns mymethod(xsd string in, xsd int *out);

where ”mydefs.gsoap” is a gSOAP header file that defines xsd string and xsd int:

typedef char *xsd string;
typedef int xsd int;

52

7.5 How to Use #include and #define Directives

The #include and #define directives are normally ignored by the gSOAP compiler. The use of the
directives is enabled with the -i option of the gSOAP compiler, see Section 7.1. However, the gSOAP
compiler will not actually parse the contents of the header files provided by the #include directives
in a header file. Instead, the #include and #define directives will be added to the generated soapH.h

header file before any other header file is included. Therefore, #include and #define directives can
be used to control the C/C++ compilation process of the sources of an application.

The following example header file refers to ostream by including <ostream>:

#include <ostream>
#define WITH COOKIES // use HTTP cookie support (you must compile stdsoap2.cpp with -
DWITH COOKIES)
#define WITH OPENSSL // use HTTP OpenSSL support (you must compile stdsoap2.cpp with
-DWITH OPENSSL)
#define SOAP DEFAULT float FLT NAN // use NaN instead of 0.0
extern class ostream; // ostream can’t be (de)serialized, but need to be declared to make it visible
to gSOAP
class ns myClass
{ ...

virtual void print(ostream &s) const; // need ostream here
...

};

This example also uses #define directives for various settings.

Caution: Note that the use of #define in the header file does not automatically result in compiling
stdsoap2.cpp with these directives. You MUST use the -DWITH COOKIES and -DWITH OPENSSL

options when compiling stdsoap2.cpp before linking the object file with your codes. As an alternative,
you can use #define WITH SOAPDEFS H and put the #define directives in the soapdefs.h file.

7.6 Compiling a gSOAP Client

After invoking the gSOAP stub and skeleton compiler on a header file description of a service, the
client application can be compiled on a Linux machine as follows:

g++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp

Or on a Unix machine:

g++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp -lsocket -lxnet -lnsl

(Depending on your system configuration, the libraries libsocket.a, libxnet.a, libnsl.a or dynamic *.so

versions of those libraries are required.)

The myclient.cpp file must include soapH.h and must define a global namespace mapping table. A
typical client program layout with namespace mapping table is shown below:

// Contents of file ”myclient.cpp”
#include ”soapH.h”;

53

...
// A remote method invocation:

soap call some remote method(...);
...
struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”}
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/1999/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/1999/XMLSchema”},
{”ns1”, ”urn:my-remote-method”},
{NULL, NULL}
};
...

A mapping table is generated by the gSOAP compiler that can be used in the source, see Sec-
tion 6.2.5.

7.7 Compiling a gSOAP Web Service

After invoking the gSOAP stub and skeleton compiler on a header file description of the service,
the server application can be compiled on a Linux machine as follows:

g++ -o myserver myserver.cpp stdsoap2.cpp soapC.cpp soapServer.cpp

Or on a Unix machine:

g++ -o myserver myserver.cpp stdsoap2.cpp soapC.cpp soapServer.cpp -lsocket -lxnet -lnsl

(Depending on your system configuration, the libraries libsocket.a, libxnet.a, libnsl.a or dynamic *.so

versions of those libraries are required.)

The myserver.cpp file must include soapH.h and must define a global namespace mapping table. A
typical service program layout with namespace mapping table is shown below:

// Contents of file ”myserver.cpp”
#include ”soapH.h”;
int main()
{

soap serve(soap new());
}
...
// Implementations of the remote methods as C++ functions
...
struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”}
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/1999/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/1999/XMLSchema”},
{”ns1”, ”urn:my-remote-method”},
{NULL, NULL}

54

};
...

When the gSOAP service is compiled and installed as a CGI application, the soap serve function acts
as a service dispatcher. It listens to standard input and invokes the method via a skeleton routine
to serve a SOAP client request. After the request is served, the response is encoded in SOAP and
send to standard output. The method must be implemented in the server application and the type
signature of the method must be identical to the remote method specified in the header file. That
is, the function prototype in the header file must be a valid prototype of the method implemented
as a C/C++ function.

7.8 Using gSOAP for Creating Web Services and Clients in Pure C

The gSOAP compiler can be used to create pure C Web services and clients. The gSOAP stub and
skeleton compiler soapcpp2 generates .cpp files by default. The compiler generates .c files with the
-c option. However, these files only use C syntax and data types if the header file input to soapcpp2

uses C syntax and data types. For example:

soapcpp2 -c quote.h
gcc -o quote quote.c stdsoap2.c soapC.c soapClient.c

Warnings will be issued by the compiler when C++ class declarations occur in the header file.

7.9 Limitations of gSOAP

gSOAP is fully SOAP 1.1 (and mostly SOAP 1.2) compliant and supports all SOAP RPC and most
SOAP LIT features.

From the perspective of the C/C++ language, a few C++ language features are not supported by
gSOAP and these features cannot be used in the specification of SOAP remote methods.

The following C++ language constructs cannot be used by the header file input to the gSOAP stub
and skeleton compiler:

Templates The gSOAP stub and skeleton compiler is a preprocessor and cannot predict the
template intantations used by the main program, nor can it generate templated code.

Multiple inheritance Single class inheritance is supported. Multiple inheritance cannot be sup-
ported due to limitations of the SOAP protocol.

Abstract methods A class must be instantiatable to allow decoding of instances of the class.

Directives Directives and pragmas such as #include and #define are interpreted by the gSOAP
compiler. However, the interpretation is different compared to the usual handling of directives,
see Section 7.5. If necessary, a traditional C++ preprocessor can be used for the interpretation
of directives. For example, Unix and Linux users can use “cpp -B” to expand the header file,
e.g. cpp -B myfile.h | soapcpp2. Use the gSOAP #import directive to import gSOAP header
files, see 7.4.

55

C and C++ programming statements All class methods of a class should be declared within
the class declaration in the header file, but the methods should not be implemented in code.
All class method implementations must be defined within another C++ source file and linked
to the application.

In addition, the following data types cannot be used in the header file (they can, however be used
as a class method return type and as class method parameter types of a class declared in the header
file):

union types Because the run-time value of a union data type cannot be determined by the compiler,
the data type cannot be encoded. An alternative is to use a struct with a pointer type for
each field. Because NULL pointers are not encoded, the resulting encoding will appear as a
union type if only one pointer field is valid (i.e. non-NULL) at the time that the data type is
encoded.

void and void* types The void data type cannot be encoded. The void* data type is typically used
to point to some object or to some array of some type of objects at run-time. The compiler
cannot determine the type of data pointed to and the size of the array pointed to.

Pointers to sequences of elements in memory Any pointer, except for C strings which are
pointers to a sequence of characters, are treated by the compiler as if the pointer points
to only one element in memory at run-time. Consequently, the encoding and decoding
routines will ignore any subsequent elements that follow the first in memory. For the same
reason, arrays of undetermined length, e.g. float a[] cannot be used. gSOAP supports dynamic
arrays using a special type convention, see Section 9.8.

Uninitialized pointers Obviously, all pointers that are part of a data structure must be valid or
NULL to enable serialization of the data structure at run time.

There are a number of programming solutions that can be adopted to circumvent these limitations.
Instead of using void*, a program can in some cases be modified to use a pointer to a known type.
If the pointer is intended to point to different types of objects, a generic base class can be declared
and the pointer is declared to point to the base class. All the other types are declared to be derived
classes of this base class. For pointers that point to a sequence of elements in memory dynamic
arrays should be used instead, see 9.8.

7.10 Runtime Flags

gSOAP provides flags to control the input and output mode settings at runtime. These flags are
divided into four categories: transport (IO), content encoding (ENC), XML marshalling (XML),
and C/C++ data mapping (C).

Although gSOAP is fully SOAP 1.1 compliant, some SOAP implementations may have trouble
accepting multi-reference data and/or require explicit nil data so these flags can be used to put
gSOAP in “safe mode”. In addition, the embedding (or inlining) of multi-reference data is adopted
in the SOAP 1.2 specification, which gSOAP automatically supports when handling with SOAP
1.2 messages. The flags are:

56

Flag Description
SOAP IO FLUSH Disable buffering and flush output (default for all file-based output)
SOAP IO BUFFER Enable buffering (default for all socket-oriented connections)
SOAP IO STORE Store entire message to calculate HTTP content length
SOAP IO CHUNK Use HTTP chunking
SOAP IO LENGTH Require apriori calculation of content length (this is automatic)
SOAP IO KEEPALIVE Attempt to keep socket connections alive (open)
SOAP ENC XML Use plain XML encoding without HTTP headers
SOAP ENC DIME Use DIME encoding (automatic when DIME attachments are used)
SOAP ENC SSL Encrypt encoding with SSL (automatic with ”https:” endpoints)
SOAP ENC ZLIB Compress encoding with Zlib (deflate or gzip format)
SOAP XML STRICT XML strict validation (fault on unknown XML elements rather than omitting them)
SOAP XML TREE Serialize data as XML trees (no multi-ref, duplicate data when necessary)
SOAP XML GRAPH Serialize data as an XML graph with inline multi-ref (SOAP 1.2 default)
SOAP XML NIL Serialize NULL data as XML nil elements (omit by default)
SOAP C NOIOB Do not fault with SOAP IOB when an array is received that does not fit in a fixed-size array
SOAP C UTFSTRING (De)serialize 8-bit strings “as is” (strings MUST have UTF-8 encoded content)

The flags can be selectively turned on/off at any time, for example when multiple Web services are
accessed by a client that require special treatment.

All flags are orthogonal, except SOAP IO FLUSH, SOAP IO BUFFER, SOAP IO STORE, and SOAP IO CHUNK

which are enumerations and only one of these I/O flags can be used. Also the XML serialization
flags SOAP XML TREE and SOAP XML GRAPH should not be mixed.

The flags control the inbound and outbound message transport, encoding, and (de)serialization.
The following functions are used to set and reset the flags for input and output modes:

Function Description
soap init2(struct soap *soap, int imode, int omode) Initialize the runtime and set flags
soap imode(struct soap *soap, int imode) Set all input mode flags
soap omode(struct soap *soap, int omode) Set all output mode flags
soap set imode(struct soap *soap, int imode) Enable input mode flags
soap set omode(struct soap *soap, int omode) Enable output mode flags
soap clr imode(struct soap *soap, int omode) Disable input mode flags
soap clr omode(struct soap *soap, int omode) Disable output mode flags

The default setting is SOAP IO DEFAULT for both input and output modes.

For example

struct soap soap;
soap init2(&soap, SOAP IO KEEPALIVE, SOAP IO KEEPALIVE|SOAP ENC ZLIB|SOAP XML TREE);
if (soap call ns myMethod(&soap, ...))
...

sends a compressed client request with keep-alive enabled and all data serialized as XML trees.

In many cases, setting the input mode will have no effect, especially with HTTP transport be-
cause gSOAP will determine the optimal input buffering and the encoding used for an inbound
message. The flags that do have an effect on handling inbound messages are SOAP IO KEEPALIVE,
SOAP ENC SSL (but automatic when ”https:” endpoints are used or soap ssl accept), SOAP XML NIL

will fault on receiving nil elements for non-nillable data, SOAP C NOIOB, and SOAP C UTFSTRING.

57

Caution: The SOAP XML TREE serialization flag can be used to improve interoperability with
SOAP implementations that are not fully SOAP 1.1 compliant. However, a tree serialization will
duplicate data when necessary and will crash the serializer for cyclic data structures.

7.11 Memory Management

Understanding gSOAP’s run-time memory management is important to optimize client and service
applications by eliminating memory leaks and/or dangling references.

There are two forms of dynamic (heap) allocations made by gSOAP’s runtime for serialization and
deserialization of data. Temporary data is created by the runtime such as hash tables to keep
pointer reference information for serialization and hash tables to keep XML id/href information for
multi-reference object deserialization. Deserialized data is created upon receiving SOAP messages.
This data is stored on the heap and requires several calls to the malloc library function to allocate
space for the data and new to create class instances. All such allocations are tracked by gSOAP’s
runtime by linked lists for later deallocation. The linked list for malloc allocations uses some extra
space in each malloced block to form a chain of pointers through the malloced blocks. A separate
malloced linked list is used to keep track of class instance allocations.

gSOAP does not enforce a deallocation policy and the user can adopt a deallocation policy that
works best for a particular application. As a consequence, deserialized data is never deallocated by
the gSOAP runtime unless the user explicitly forces deallocation by calling functions to deallocate
data collectively or individually.

The deallocation functions are:

Function Call Description
soap end(struct soap *soap) Remove temporary data and deserialized data except

class instances
soap free(struct soap *soap) Remove temporary data only
soap destroy(struct soap *soap) Remove all dynamically allocated class instances.

Need to be called before soap end()
soap dealloc(struct soap *soap, void *p) Remove malloced data at p. When p==NULL: remove all

dynamically allocated (deserialized) data except class instances
soap delete(struct soap *soap, void *p) Remove class instance at p. When p==NULL: remove all

dynamically allocated (deserialized) class instances
(this is identical to calling soap destroy(struct soap *soap))

soap unlink(struct soap *soap, void *p) Unlink data/object at p from gSOAP’s deallocation chain
so gSOAP won’t deallocate it

soap done(struct soap *soap) Reset: close master/slave sockets and remove callbacks
(see Section 13.7

Temporary data (i.e. the hash tables) are automatically removed with calls to the soap free function
which is made within soap end and soap done or when the next call to a stub or skeleton routine is
made to send a message or receive a message. Deallocation of non-class based data is straightfor-
ward: soap end removes all dynamically allocated deserialized data (data allocated with soap malloc.
That is, when the client/service application does not use any class instances that are (de)marshalled,
but uses structs, arrays, etc., then calling the soap end function is safe to remove all deserialized
data. The function can be called after processing the deserialized data of a remote method call
or after a number of remote method calls have been made. The function is also typically called
after soap serve, when the service finished sending the response to a client and the deserialized client

58

request data can be removed.

Individual data objects can be unlinked from the deallocation chain if necessary, to prevent deal-
location by the collective soap end or soap destroy functions.

7.11.1 Memory Management Policies

There are three situations to consider for memory deallocation policies for class instances:

1. the program code deletes the class instances and the class destructors in turn SHOULD delete
and free any dynamically allocated data (deep deallocation) without calling the soap end and
soap destroy functions,

2. or the class destructors SHOULD NOT deallocate any data and the soap end and soap destroy

functions can be called to remove the data.

3. or the class destructors SHOULD mark their own deallocation and mark the deallocation
of any other data deallocated by it’s destructors by calling the soap unlink function. This
allows soap destroy and soap end to remove the remaining instances and data without causing
duplicate deallocations.

With the -m option of soapcpp2 enabled (to be depricated), there is one exception which requires
explicit deallocation of malloced data in the destructors of classes for array binary types:

• A dynamic array class with non-class elements SHOULD delete the contents of the array
it points to as part of its destructor’s operations (this includes classes for hexBinary and
base64Binary schema types.

It is advised to use pointers to class instances that are used within other structs and classes to
avoid the creation of temporary class instances. The problem with temporary class instances is
that the destructor of the temporary may affect data used by other instances through the sharing
of data parts accessed with pointers. Temporaries and even whole copies of class instances can be
created when deserializing SOAP multi-referenced objects. A dynamic array of class instances is
similar: temporaries may be created to fill the array upon deserialization. To avoid problems, use
dynamic arrays of pointers to class instances. This also enables the exchange of polymorphic arrays
when the elements are instances of classes in an inheritance hierarchy. In addition, allocate data
and class instances with soap malloc and soap new X functions (more details below).

To summarize, it is advised to pass class data types by pointer to a remote method. For example:

class X { ... };
ns remoteMethod(X *in, ...);

Response elements that are class data types can be passed by reference, as in:

class X { ... };
class ns remoteMethodResponse { ... };
ns remoteMethod(X *in, ns remoteMethodResponse &out);

But dynamic arrays declared as class data types should use a pointer to a valid object that will be
overwritten when the function is called, as in:

59

typedef int xsd int;
class X { ... };
class ArrayOfint { xsd int * ptr; int size; };
ns remoteMethod(X *in, ArrayOfint *out);

Or a reference to a valid or NULL pointer, as in:

typedef int xsd int;
class X { ... };
class ArrayOfint { xsd int * ptr; int size; };
ns remoteMethod(X *in, ArrayOfint *&out);

The gSOAP memory allocation functions can be used in client and/or service code to allocate
temporary data that will be automatically deallocated. These functions are:

Function Call Description
void *soap malloc(struct soap *soap, size t n) return pointer to n bytes
Class *soap new Class(struct soap *soap, int n) instantiate n Class objects

The soap new X functions are generated by the gSOAP compiler for every class X in the header file.
Parameter n MUST be -1 to instantiate a single object or ≥ 0 to instantiate an array of n objects.

Space allocated with soap malloc will be released with the soap end and soap dealloc functions. Ob-
jects instantiated with soap new X(struct soap*) are removed altogether with soap destroy(structsoap*).
Individual objects instantiated with soap new X are removed with soap delete X(struct soap*, X*). For
example, the following service uses temporary data in the remote method implementation:

int main()
{ ...

struct soap soap;
soap init(&soap);
soap serve(&soap);
soap end(&soap);
...

}

An example remote method that allocates a temporary string is:

int ns itoa(struct soap *soap, int i, char **a)
{

a = (char)soap malloc(soap, 11);
sprintf(*a, ”%d”, i);
return SOAP OK;
}

This temporary allocation can also be used to allocate strings for the SOAP Fault data structure.
For example:

int ns mymethod(...)
{ ...

if (exception)
{

60

char *msg = (char*)soap malloc(soap, 1024); // allocate temporary space for detailed message
sprintf(msg, ”...”, ...); // produce the detailed message
return soap receiver fault(soap, ”An exception occurred”, msg); // return the server-side fault
}
...
}

Use soap receiver fault(struct soap *soap, const char *faultstring, const char *detail) to set a SOAP 1.1/1.2
fault at the server-side. Use soap sender fault(struct soap *soap, const char *faultstring, const char *detail)

to set a SOAP 1.1/1.2 unrecoverable Bad Request fault at the server-side.

7.11.2 Intra-Class Memory Management

When a class declaration has a struct soap * field, this field will be set to point to the current gSOAP
run-time environment by gSOAP’s deserializers and by the soap new Class functions. This simplifies
memory management for class instances. The struct soap* pointer is implicitly set by the gSOAP
deserializer for the class or explicitly by calling the soap new X function for class X. For example:

class Sample
{ public:

struct soap *soap; // reference to gSOAP’s run-time
...
Sample();
˜Sample();
};

The constructor and destructor for class Sample are:

Sample::Sample()
{ this->soap = NULL;
}
Sample::˜Sample()
{ soap unlink(this->soap, this);
}

The soap unlink() call removes the object from gSOAP’s deallocation chain. In that way, soap destroy

can be safely called to remove all class instances. The following code illustrates the explicit creation
of a Sample object and cleanup:

struct soap *soap = soap new(); // new gSOAP runtime
Sample *obj = soap new Sample(soap, -1); // new Sample object with obj->soap set to runtime
...
delete obj; // also calls soap unlink to remove obj from the deallocation chain
soap destroy(soap); // deallocate all (other) class instances
soap end(soap); // clean up

Here is another example:

class ns myClass
{ ...

61

struct soap *soap; // set by soap new ns myClass()
char *name;
void setName(const char *s);
...
};

Calls to soap new ns myClass(soap, n) will set the soap field in the class instance to the current
gSOAP environment. Because the deserializers invoke the soap new functions, the soap field of the
ns myClass instances are set as well. This mechanism is convenient when Web Service methods
need to return objects that are instantiated in the methods. For example

int ns myMethod(struct soap *soap, ...)
{

ns myClass *p = soap new ns myClass(soap, -1);
p-¿setName(”SOAP”);
return SOAP OK;
}
void ns myClass::ns setName(const char *s)
{

if (soap)
name = (char*)soap malloc(soap, strlen(s)+1);

else
name = (char*)malloc(strlen(s)+1);

strcpy(name, s);
}
ns myClass::ns myClass()
{

soap = NULL;
name = NULL;
}
ns myClass::˜ns myClass()
{

if (!soap && name) free(name);
soap unlink(soap, this);
}

Calling soap destroy right after soap serve in the Web Service will destroy all dynamically allocated
class instances.

7.12 Debugging

To activate message logging for debugging, un-comment the #define DEBUG directive in stdsoap2.h.
Compile the client and/or server applications as described above (or simply use g++ -DDEBUG ...

to compile with debugging activated). When the client and server applications run, they will log
their activity in three separate files:

File Description
SENT.log The SOAP content transmitted by the application
RECV.log The SOAP content received by the application
TEST.log A log containing various activities performed by the application

62

Caution: The client and server applications may run slow due to the logging activity.

Caution: When installing a CGI application on the Web with debugging activated, the log files may
sometimes not be created due to file access permission restrictions imposed on CGI applications.
To get around this, create empty log files with universal write permissions. Be careful about the
security implication of this.

You can test a service CGI application without deploying it on the Web. To do this, create a client
application for the service and activate message logging by this client. Remove any old SENT.log file
and run the client (which connects to the Web service or to another dummy, but valid address) and
copy the SENT.log file to another file, e.g. SENT.tst. Then redirect the SENT.tst file to the service
CGI application. For example,

myservice.cgi < SENT.tst

This should display the service response on the terminal.

The file names of the log files and the logging activity can be controlled at the application level.
This allows the creation of separate log files by separate services, clients, and threads. For example,
the following service logs all SOAP messages (but no debug messages) in separate directories:

struct soap soap;
soap init(&soap);
...
soap set recv logfile(&soap, ”logs/recv/service12.log”); // append all messages received in /logs/recv/service12.log
soap set sent logfile(&soap, ”logs/sent/service12.log”); // append all messages sent in /logs/sent/service12.log
soap set test logfile(&soap, NULL); // no file name: do not save debug messages
...
soap serve(&soap);
...

Likewise, messages can be logged for individual client-side remote method calls.

7.13 Libraries

• The socket library is essential and requires the inclusion of the appropriate libraries with the
compile command for Sun Solaris systems:

g++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp -lsocket -lxnet -lnsl

These library loading options are not required with Linux.

• The gSOAP runtime uses the math library for the NaN, INF, and -INF floating point repre-
sentations. The library is not strictly necessary and the ¡math.h¿ header file import can be
commented out from the stdsoap2.h header file. The application can be linked without the -lm

math library e.g. under Sun Solaris:

g++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp -lsocket -lxnet -lnsl

63

8 The gSOAP Remote Method Specification Format

A SOAP remote method is specified as a C/C++ function prototype in a header file. The function
is REQUIRED to return int, which is used to represent a SOAP error code, see Section 8.2. Multiple
remote methods MAY be declared together in one header file.

The general form of a SOAP remote method specification is:

[int] [namespace prefix]method name([inparam1, inparam2, ...,] outparam);

where

namespace prefix is the optional namespace prefix of the method (see identifier translation rules 8.3)

method name it the remote method name (see identifier translation rules 8.3)

inparam is the declaration of an input parameter of the remote method

outparam is the declaration of the output parameter of the remote method

This simple form can only pass a single, non-struct and non-class type output parameter. See 8.1 for
passing multiple output parameters. The name of the declared function namespace prefix method name

must be unique and cannot match the name of a struct, class, or enum declared in the same header
file.

The method request is encoded in SOAP as an XML element and the namespace prefix, method
name, and input parameters are encoded using the format:

<[namespace-prefix:]method name xsi:type="[namespace-prefix:]method name>
<inparam-name1 xsi:type="...">...</inparam-name1>
<inparam-name2 xsi:type="...">...</inparam-name2>
...
</[namespace-prefix:]method name>

where the inparam-name accessors are the element-name representations of the inparam parameter
name declarations, see Section 8.3. (The optional parts are shown enclosed in [].)

The XML response by the Web service is of the form:

<[namespace-prefix:]method-nameResponse xsi:type="[namespace-prefix:]method-nameResponse>
<outparam-name xsi:type="...">...</outparam-name>
</[namespace-prefix:]method-nameResponse>

where the outparam-name accessor is the element-name representation of the outparam parameter
name declaration, see Section 8.3. By convention, the response element name is the method name
ending in Response. See 8.1 on how to change the declaration if the service response element name
is different.

The gSOAP stub and skeleton compiler generates a stub routine for the remote method. This stub
is of the form:

int soap call [namespace prefix]method name(struct soap *soap, char *URL, char *action, [inparam1,
inparam2, ...,] outparam);

64

This proxy can be called by a client application to perform the remote method call.

The gSOAP stub and skeleton compiler generates a skeleton routine for the remote method. The
skeleton function is:

int soap serve [namespace prefix]method name(struct soap *soap);

The skeleton routine, when called by a service application, will attempt to serve a request on
the standard input. If no request is present or if the request does not match the method name,
SOAP NO METHOD is returned. The skeleton routines are automatically called by the generated
soap serve routine that handles all requests.

8.1 Remote Method Parameter Passing

The input parameters of a remote method MUST be passed by value. Input parameters cannot be
passed by reference with the & reference operator, but an input parameter value MAY be passed
by a pointer to the data. Of course, passing a pointer to the data is prefered when the size of the
data of the parameter is large. Also, to pass instances of (derived) classes, pointers to the instance
need to be used to avoid passing the instance by value which requires a temporary and prohibits
passing derived class instances. When two input parameter values are identical, passing them using
a pointer has the advantage that the value will be encoded only once as multi-reference (hence, the
parameters are aliases). When input parameters are passed using a pointer, the data pointed to
will not be modified by the remote method and returned to the caller.

The output parameter MUST be passed by reference using & or by using a pointer. Arrays are
passed by reference by default and do not require the use of the reference operator &.

The input and output parameter types have certain limitations, see Section 7.9

If the output parameter is a struct or class type, it is considered a SOAP remote method response
element instead of a simple output parameter value. That is, the name of the struct or class is
the name of the response element and the struct or class fields are the output parameters of the
remote method, see also 6.1.7. Hence, if the output parameter has to be a struct or class, a response
struct or class MUST be declared as well. In addition, if a remote method returns multiple output
parameters, a response struct or class MUST be declared. By convention, the response element is
the remote method name ending with “Response”.

The general form of a response element declaration is:

struct [namespace prefix]response element name
{

outparam1;
outparam2;
...
};

where

namespace prefix is the optional namespace prefix of the response element (see identifier translation
rules 8.3)

response element name it the name of the response element (see identifier translation rules 8.3)

65

outparam is the declaration of an output parameter of the remote method

The general form of a remote method specification with a response element declaration for (multiple)
output parameters is:

[int] [namespace prefix]method name([inparam1, inparam2, ...,] struct [namespace prefix]response element name
{outparam1[, outparam2, ...]} &anyparam);

The choice of name for anyparam has no effect on the SOAP encoding and decoding and is only used
as a place holder for the response.

The method request is encoded in SOAP as an independent element and the namespace prefix,
method name, and input parameters are encoded using the format:

<[namespace-prefix:]method-name xsi:type="[namespace-prefix:]method-name>
<inparam-name1 xsi:type="...">...</inparam-name1>
<inparam-name2 xsi:type="...">...</inparam-name2>
...
</[namespace-prefix:]method-name>

where the inparam-name accessors are the element-name representations of the inparam parameter
name declarations, see Section 8.3. (The optional parts resulting from the specification are shown
enclosed in [].)

The method response is expected to be of the form:

<[namespace-prefix:]response-element-name xsi:type="[namespace-prefix:]response-element-name>
<outparam-name1 xsi:type="...">...</outparam-name1>
<outparam-name2 xsi:type="...">...</outparam-name2>
...
</[namespace-prefix:]response-element-name>

where the outparam-name accessors are the element-name representations of the outparam parameter
name declarations, see Section 8.3. (The optional parts resulting from the specification are shown
enclosed in [].)

The input and/or output parameters can be made anonymous, which allows the deserialization of
requests/responses with different parameter names as is endorsed by the SOAP 1.1 specification,
see Section 6.1.13.

8.2 Stub and Skeleton Routine Error Codes

The error codes returned by the stub and skeleton routines are listed below.

66

Code Description
0 SOAP OK No error
1 SOAP CLI FAULT* The service returned a client fault (SOAP 1.2 Sender fault)
2 SOAP SVR FAULT* The service returned a server fault (SOAP 1.2 Receiver fault)
3 SOAP TAG MISMATCH An XML element didn’t correspond to anything expected
4 SOAP TYPE MISMATCH An XML schema type mismatch
5 SOAP SYNTAX ERROR An XML syntax error occurred on the input
6 SOAP NO TAG Begin of an element expected, but not found
7 SOAP IOB Array index out of bounds
8 SOAP MUSTUNDERSTAND* An element needs to be ignored that need to be understood
9 SOAP NAMESPACE Namespace name mismatch (validation error)

10 SOAP OBJ MISMATCH Mismatch in the size and/or shape of an object
11 SOAP FATAL ERROR Internal error
12 SOAP FAULT An exception raised by the service
13 SOAP NO METHOD Skeleton error: the skeleton cannot serve the method
14 SOAP GET METHOD Unsupported HTTP GET
15 SOAP EOM Out of memory
16 SOAP NULL An element was null, while it is not supposed to be null
17 SOAP MULTI ID Multiple occurrences of the same element ID on the input
18 SOAP MISSING ID Element ID missing for an HREF on the input
19 SOAP HREF Reference to object is incompatible with the object refered to
20 SOAP TCP ERROR A TCP connection error occured
21 SOAP HTTP ERROR An HTTP error occured
22 SOAP SSL ERROR An SSL error occured
23 SOAP ZLIB ERROR A Zlib error occured
24 SOAP DIME ERROR DIME parsing error
25 SOAP EOD End of DIME error
26 SOAP VERSIONMISMATCH* SOAP version mismatch or no SOAP message
27 SOAP DIME MISMATCH DIME version mismatch
28 SOAP PLUGIN ERROR Failed to register plugin
-1 SOAP EOF Unexpected end of file, no input, or timeout receiving data

The error codes that are returned by a stub routine (proxy) upon receiving a SOAP Fault from
the server are marked (*). The remaining error codes are generated by the proxy itself as a result
of problems with a SOAP payload. The error code is SOAP OK when the remote method call was
successful (the SOAP OK predefined constant is guaranteed to be 0). The error code is also stored
in soap.error, where soap is a variable that contains the current runtime environment. The function
soap print fault(struct soap *soap, FILE *fd) can be called to display an error message on fd where
current value of the soap.error variable is used by the function to display the error. The function
soap print fault location(struct soap *soap, FILE *fd) prints the location of the error if the error is a
result from parsing XML.

A remote method implemented in a SOAP service MUST return an error code as the function’s
return value. SOAP OK denotes success and SOAP FAULT denotes an exception. The exception
details can be assigned with the soap receiver fault(struct soap *soap, const char *faultstring, const

char *detail) which sets the strings soap.fault->faultstring and soap.fault->detail for SOAP 1.1, and
soap.fault->SOAP ENV Reason and soap.fault->SOAP ENV Detail for SOAP 1.2, where soap is a vari-
able that contains the current runtime environment, see Section 10.

67

8.3 C/C++ Identifier Name to XML Name Translations

One of the “secrets” behind the power and flexibility of gSOAP’s encoding and decoding of remote
method names, class names, type identifiers, and struct or class fields is the ability to specify
namespace prefixes with these names that are used to denote their encoding style. More specifically,
a C/C++ identifier name of the form

[namespace prefix]element name

will be encoded in XML as

<[namespace-prefix:]element-name ...>

The underscore pair () separates the namespace prefix from the element name. Each namespace
prefix has a namespace URI specified by a namespace mapping table 8.4, see also Section 6.1.2.
The namespace URI is a unique identification that can be associated with the remote methods and
data types. The namespace URI disambiguates potentially identical remote method names and
data type names used by disparate organizations.

XML element names are NCNames (restricted strings) that MAY contain hypens, dots, and
underscores. The special characters in the XML element names of remote methods, structs,
classes, typedefs, and fields can be controlled using the following conventions: A single underscore
in a namespace prefix or identifier name is replaced by a hyphen (-) in the XML element name. For
example, the identifier name SOAP ENC ur type is represented in XML as SOAP-ENC:ur-type. The
sequence DOT is replaced by a dot (.), and the sequence USCORE is replaced by an underscore
() in the corresponding XML element name. For example:

class n s biz DOT com
{

char *n s biz USCORE name;
};

is encoded in XML as:

<n-s:biz.com xsi:type="n-s:biz.com">
<n-s:biz name xsi:type="string">Bizybiz</n-s:biz name>

</n-s:biz.com>

Trailing underscores of an identifier name are not translated into the XML representation. This is
useful when an identifier name clashes with a C++ keyword. For example, return is often used
as an accessor name in a SOAP response element. The return element can be specified as return

in the C++ source code. Note that XML should be treated as case sensitive, so the use of e.g.
Return may not always work to avoid a name clash with the return keyword. The use of trailing
underscores also allows for defining structs and classes with essentially the same XML schema type
name, but that have to be distinghuished as seperate C/C++ types.

For decoding, the underscores in identifier names act as wildcards. An XML element is parsed and
matches the name of an identifier if the name is identical to the element name (case insensitive)
and the underscores in the identifier name are allowed to match any character in the element
name. For example, the identifier name I want soap fun the bea DOT com matches the element
name I-want:SOAP4fun@the-beach.com.

68

8.4 Namespace Mapping Table

A namespace mapping table MUST be defined by clients and service applications. The mapping
table is used by the serializers and deserializers of the stub and skeleton routines to produce a valid
SOAP payload and to validate an incoming SOAP payload. A typical mapping table is shown
below:

struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”}
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”}, // MUST be first
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”}, // MUST be second
{”xsi”, ”http://www.w3.org/1999/XMLSchema-instance”}, // MUST be third
{”xsd”, ”http://www.w3.org/1999/XMLSchema”}, // Required for XML schema types
{”ns1”, ”urn:my-service-URI”}, // The namespace URI of the remote methods
{NULL, NULL} // end of table
};

Each namespace prefix used by a identifier name in the header file specification (see Section 8.3)
MUST have a binding to a namespace URI in the mapping table. The end of the namespace map-
ping table MUST be indicated by the NULL pair. The namespace URI matching is case insensitive.
A namespace prefix is distinghuished by the occurrence of a pair of underscores () in an identifier.

An optional namespace pattern MAY be provided with each namespace mapping table entry. The
patterns provide an alternative namespace matching for the validation of decoded SOAP messages.
In this pattern, dashes (-) are single-character wildcards and asterisks (*) are multi-character wild-
cards. For example, to decode different versions of XML Schema type with different authoring
dates, four dashes can be used in place of the specific dates in the namespace mapping table
pattern:

struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”, ”ns-name validation pattern”}
...
{”xsi”, ”http://www.w3.org/1999/XMLSchema-instance”, ”http://www.w3.org/----/XMLSchema-

instance”},
{”xsd”, ”http://www.w3.org/1999/XMLSchema”, ”http://www.w3.org/----/XMLSchema”},

...

Or alternatively, asterisks can be used as wildcards for multiple characters:

struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”, ”ns-name validation pattern”}
...
{”xsi”, ”http://www.w3.org/1999/XMLSchema-instance”, ”http://www.w3.org/*/XMLSchema-

instance”},
{”xsd”, ”http://www.w3.org/1999/XMLSchema”, ”http://www.w3.org/*/XMLSchema”},

...

A namespace mapping table is automatically generated together with a WSDL file for each names-
pace prefix that is used for a remote method in the header file. This namespace mapping table
has entries for all namespace prefixes. The namespace URIs need to be filled in. These appear as

69

http://tempuri.org in the table. See Section 13.2 on how to specify the namespace URIs in the header
file.

For decoding elements with namespace prefixes, the namespace URI associated with the namespace
prefix (through the xmlns attribute of an XML element) is searched from the beginning to the end
in a namespace mapping table, and for every row the following tests are performed as part of the
validation process:

1. the string in the second column matches the namespace URI (case insensitive)

2. the string in the optional third column matches the namespace URI (case insensitive), where
- is a one-character wildcard and * is a multi-character wildcard

When a match is found, the namespace prefix in the first column of the table is considered semanti-
cally identical to the namespace prefix used by the XML element to be decoded, though the prefix
names may differ. A service will respond with the namespace that it received from a client in case
it matches a pattern in the third column.

For example, let’s say we have the following structs:

struct a elt { ... };
struct b elt { ... };
struct k elt { ... };

and a namespace mapping table in the program:

struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”, ”ns-name validation pattern”}
...
{”a”, ”some uri”},
{”b”, ”other uri”},
{”c”, ”his uri”, ”* uri”},

...

Then, the following XML elements will match the structs:

<n:elt xmlns:n="some URI"> matches the struct name a elt
...
<m:elt xmlns:m="other URI"> matches the struct name b elt
...
<k:elt xmlns:k="my URI"> matches the struct name c elt
...

The response of a service to a client request that uses the namespaces listed above, will include my

URI for the name space of element k.

It is possible to use a number of different namespace tables and select the one that is appropriate.
For example, an application might contact many different Web services all using different namespace
URIs. If all the URIs are stored in one table, each remote method invocation will dump the whole
namespace table in the SOAP payload. There is no technical problem with that, but it can be ugly
when the table is large. To use different namespace tables, declare a pointer to a table and set the
pointer to a particular table before remote method invocation. For example:

70

struct Namespace namespacesTable1[] = { ... };
struct Namespace namespacesTable2[] = { ... };
struct Namespace namespacesTable3[] = { ... };
struct Namespace *namespaces;
...
struct soap soap;
...
soap init(&soap);
soap.namespaces = namespaceTable1;
soap call remote method(&soap, URL, Action, ...);
...

9 gSOAP Serialization and Deserialization Rules

This section describes the serialization and deserialization of C and C++ data types for SOAP 1.1
and 1.2 compliant encoding and decoding.

9.1 Primitive Type Encoding

The default encoding rules for the primitive C and C++ data types are given in the table below:

Type XSD Type
bool boolean
char* (C string) string
char byte
double double
float float
int int
long long
LONG64 long
long long long
short short
time t dateTime
unsigned char unsignedByte
unsigned int unsignedInt
unsigned long unsignedLong
ULONG64 unsignedLong
unsigned long long unsignedLong
unsigned short unsignedShort
wchar t* string

Objects of type void and void* cannot be encoded. Enumerations and bit masks are supported as
well, see 9.3.

9.2 How to Encode and Decode Primitive Types as XSD Types

By default, encoding of the primitive types will take place as per SOAP encoding style. The
encoding can be changed to any XML schema type (XSD type) with an optional namespace prefix
by using a typedef in the header file input to the gSOAP stub and skeleton compiler. The declaration

71

enables the implementation of built-in XML schema types (also known as XSD types) such as
positiveInteger, xsd:anyURI, and xsd:date for which no built-in data structures in C and C++
exist but which can be represented using standard data structures such as strings, integers, and
floats.

The typedef declaration is frequently used for convenience in C. A typedef declares a type name
for a (complex) type expression. The type name can then be used in other declarations in place of
the more complex type expression, which often improves the readability of the program code.

The gSOAP compiler interprets typedef declarations the same way as a regular C compiler interprets
them, i.e. as types in declarations. In addition however, the gSOAP compiler will also use the type
name in the encoding of the data in SOAP. The typedef name will appear as the XML element
name of an independent element and as the value of the xsi:type attribute in the SOAP payload.

Many built-in primitive and derived XSD types such as xsd:anyURI, positiveInteger, and decimal

can be stored by standard primitive data structures in C++ as well such as strings, integers, floats,
and doubles. To serialize strings, integers, floats, and doubles as built-in primitive and derived
XSD types. To this end, a typedef declaration can be used to declare an XSD type.

For example, the declaration

typedef unsigned int xsd positiveInteger;

creates a named type positiveInteger which is represented by unsigned int in C++. For example, the
encoding of a positiveInteger value 3 is

<positiveInteger xsi:type="xsd:positiveInteger">3</positiveInteger>

The built-in primitive and derived numerical XML Schema types are listed below together with
their recommended typedef declarations. Note that the SOAP encoding schemas for primitive types
are derived from the built-in XML schema types, so SOAP ENC can be used as a namespace prefix
instead of xsd .

xsd:anyURI Represents a Uniform Resource Identifier Reference (URI). Each URI scheme imposes
specialized syntax rules for URIs in that scheme, including restrictions on the syntax of
allowed fragement identifiers. It is recommended to use strings to store xsd:anyURI XML
schema types. The recommended type declaration is:

typedef char *xsd anyURI;

xsd:base64Binary Represents Base64-encoded arbitrary binary data. For using the xsd:base64Binary
XML schema type, the use of the base64Binary representation of a dynamic array is strongly
recommended, see Section 9.9. However, the type can also be declared as a string and the
encoding will be string-based:

typedef char *xsd base64Binary;

With this approach, it is solely the responsibility of the application to make sure the string
content is according to the Base64 Content-Transfer-Encoding defined in Section 6.8 of RFC
2045.

xsd:boolean For declaring an xsd:boolean XML schema type, the use of a bool is strongly recom-
mended. If a pure C compiler is used that does not support the bool type, see Section 9.3.5.
The corresponding type declaration is:

72

typedef bool xsd boolean;

Type xsd boolean declares a Boolean (0 or 1), which is encoded as

<xsd:boolean xsi:type="xsd:boolean">...</xsd:boolean>

xsd:byte Represents a byte (-128...127). The corresponding type declaration is:

typedef char xsd byte;

Type xsd byte declares a byte which is encoded as

<xsd:byte xsi:type="xsd:byte">...</xsd:byte>

xsd:dateTime Represents a date and time. The lexical representation is according to the ISO
8601 extended format CCYY-MM-DDThh:mm:ss where ”CC” represents the century, ”YY”
the year, ”MM” the month and ”DD” the day, preceded by an optional leading ”-” sign to
indicate a negative number. If the sign is omitted, ”+” is assumed. The letter ”T” is the
date/time separator and ”hh”, ”mm”, ”ss” represent hour, minute and second respectively.
It is recommended to use the time t type to store xsd:dateTime XML schema types and the
type declaration is:

typedef time t xsd dateTime;

However, note that calendar times before the year 1902 or after the year 2037 cannot be
represented. Upon receiving a date outside this range, the time t value will be set to -1.

Strings (char*) can be used to store xsd:dateTime XML schema types. The type declaration
is:

typedef char *xsd dateTime;

In this case, it is up to the application to read and set the dateTime representation.

xsd:date Represents a date. The lexical representation for date is the reduced (right truncated)
lexical representation for dateTime: CCYY-MM-DD. It is recommended to use strings (char*)
to store xsd:date XML schema types. The type declaration is:

typedef char *xsd date;

xsd:decimal Represents arbitrary precision decimal numbers. It is recommended to use the double
type to store xsd:decimal XML schema types and the type declaration is:

typedef double xsd decimal;

Type xsd decimal declares a double floating point number which is encoded as

<xsd:double xsi:type="xsd:decimal">...</xsd:double>

xsd:double Corresponds to the IEEE double-precision 64-bit floating point type. The type decla-
ration is:

typedef double xsd double;

Type xsd double declares a double floating point number which is encoded as

73

<xsd:double xsi:type="xsd:double">...</xsd:double>

xsd:duration Represents a duration of time. The lexical representation for duration is the ISO
8601 extended format PnYn MnDTnH nMnS, where nY represents the number of years, nM
the number of months, nD the number of days, T is the date/time separator, nH the number
of hours, nM the number of minutes and nS the number of seconds. The number of seconds
can include decimal digits to arbitrary precision. It is recommended to use strings (char*) to
store xsd:duration XML schema types. The type declaration is:

typedef char *xsd duration;

xsd:float Corresponds to the IEEE single-precision 32-bit floating point type. The type declara-
tion is:

typedef float xsd float;

Type xsd float declares a floating point number which is encoded as

<xsd:float xsi:type="xsd:float">...</xsd:float>

xsd:hexBinary Represents arbitrary hex-encoded binary data. It has a lexical representation where
each binary octet is encoded as a character tuple, consisting of two hexadecimal digits ([0-
9a-fA-F]) representing the octet code. For example, ”0FB7” is a hex encoding for the 16-bit
integer 4023 (whose binary representation is 111110110111. For using the xsd:hexBinary

XML schema type, the use of the hexBinary representation of a dynamic array is strongly
recommended, see Section 9.10. However, the type can also be declared as a string and the
encoding will be string-based:

typedef char *xsd hexBinary;

With this approach, it is solely the responsibility of the application to make sure the string
content consists of a sequence of octets.

xsd:int Corresponds to a 32-bit integer in the range -2147483648 to 2147483647. If the C++
compiler supports 32-bit int types, the type declaration can use the int type:

typedef int xsd int;

Otherwise, the C++ compiler supports 16-bit int types and the type declaration should use
the long type:

typedef long xsd int;

Type xsd int declares a 32-bit integer which is encoded as

<xsd:int xsi:type="xsd:int">...</xsd:int>

xsd:integer Corresponds to an unbounded integer. Since C++ does not support unbounded inte-
gers as a standard feature, the recommended type declaration is:

typedef long long xsd integer;

Type xsd integer declares a 64-bit integer which is encoded as an unbounded xsd:integer:

<xsd:integer xsi:type="xsd:integer">...</xsd:integer>

74

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:long Corresponds to a 64-bit integer in the range -9223372036854775808 to 9223372036854775807.
The type declaration is:

typedef long long xsd long;

Or in Visual C++:

typedef LONG64 xsd long;

Type xsd long declares a 64-bit integer which is encoded as

<xsd:long xsi:type="xsd:long">...</xsd:long>

xsd:negativeInteger Corresponds to a negative unbounded integer (< 0). Since C++ does not
support unbounded integers as a standard feature, the recommended type declaration is:

typedef long long xsd negativeInteger;

Type xsd negativeInteger declares a 64-bit integer which is encoded as a xsd:negativeInteger:

<xsd:negativeInteger xsi:type="xsd:negativeInteger">...</xsd:negativeInteger>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:nonNegativeInteger Corresponds to a non-negative unbounded integer (> 0). Since C++ does
not support unbounded integers as a standard feature, the recommended type declaration is:

typedef unsigned long long xsd nonNegativeInteger;

Type xsd nonNegativeInteger declares a 64-bit unsigned integer which is encoded as a non-
negative unbounded xsd:nonNegativeInteger:

<xsd:nonNegativeInteger xsi:type="xsd:nonNegativeInteger">...</xsd:nonNegativeInteger>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:nonPositiveInteger Corresponds to a non-positive unbounded integer (≤ 0). Since C++ does
not support unbounded integers as a standard feature, the recommended type declaration is:

typedef long long xsd nonPositiveInteger;

Type xsd nonPositiveInteger declares a 64-bit integer which is encoded as a xsd:nonPositiveInteger:

<xsd:nonPositiveInteger xsi:type="xsd:nonPositiveInteger">...</xsd:nonPositiveInteger>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:normalizedString Represents normalized character strings. Normalized character strings do
not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. It is
recommended to use strings to store xsd:normalizeString XML schema types. The type
declaration is:

75

typedef char *xsd normalizedString;

Type xsd normalizedString declares a string type which is encoded as

<xsd:normalizedString xsi:type="xsd:normalizedString">...</xsd:normalizedString>

It is solely the responsibility of the application to make sure the strings do not contain carriage
return (#xD), line feed (#xA) and tab (#x9) characters.

xsd:positiveInteger Corresponds to a positive unbounded integer (≥ 0). Since C++ does not
support unbounded integers as a standard feature, the recommended type declaration is:

typedef unsigned long long xsd positiveInteger;

Type xsd positiveInteger declares a 64-bit unsigned integer which is encoded as a xsd:positiveInteger:

<xsd:positiveInteger xsi:type="xsd:positiveInteger">...</xsd:positiveInteger>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:short Corresponds to a 16-bit integer in the range -323768 to 323767. The type declaration
is:

typedef short xsd short;

Type xsd short declares a short 16-bit integer which is encoded as

<xsd:short xsi:type="xsd:short">...</xsd:short>

xsd:string Represents character strings. The type declaration is:

typedef char *xsd string;

Type xsd string declares a string type which is encoded as

<xsd:string xsi:type="xsd:string">...</xsd:string>

The type declaration for wide character strings is:

typedef wchar t *xsd string;

Both type of strings can be used at the same time, but requires one typedef name to be
changed by appending an underscore which is invisible in XML. For example:

typedef wchar t *xsd string ;

xsd:time Represents a time. The lexical representation for time is the left truncated lexical rep-
resentation for dateTime: hh:mm:ss.sss with optional following time zone indicator. It is
recommended to use strings (char*) to store xsd:time XML schema types. The type declara-
tion is:

typedef char *xsd time;

76

xsd:token Represents tokenized strings. Tokens are strings that do not contain the line feed (#xA)
nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no
internal sequences of two or more spaces. It is recommended to use strings to store xsd:token

XML schema types. The type declaration is:

typedef char *xsd token;

Type xsd token declares a string type which is encoded as

<xsd:token xsi:type="xsd:token">...</xsd:token>

It is solely the responsibility of the application to make sure the strings do not contain the
line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and
that have no internal sequences of two or more spaces.

xsd:unsignedByte Corresponds to an 8-bit unsigned integer in the range 0 to 255. The type decla-
ration is:

typedef unsigned char xsd unsignedByte;

Type xsd unsignedByte declares a unsigned 8-bit integer which is encoded as

<xsd:unsignedByte xsi:type="xsd:unsignedByte">...</xsd:unsignedByte>

xsd:unsignedInt Corresponds to a 32-bit unsigned integer in the range 0 to 4294967295. If the
C++ compiler supports 32-bit int types, the type declaration can use the int type:

typedef unsigned int xsd unsignedInt;

Otherwise, the C++ compiler supports 16-bit int types and the type declaration should use
the long type:

typedef unsigned long xsd unsignedInt;

Type xsd unsignedInt declares an unsigned 32-bit integer which is encoded as

<xsd:unsignedInt xsi:type="xsd:unsignedInt">...</xsd:unsignedInt>

xsd:unsignedLong Corresponds to a 64-bit unsigned integer in the range 0 to 18446744073709551615.
The type declaration is:

typedef unsigned long long xsd unsignedLong;

Or in Visual C++:

typedef ULONG64 xsd unsignedLong;

Type xsd unsignedLong declares an unsigned 64-bit integer which is encoded as

<xsd:unsignedLong xsi:type="xsd:unsignedLong">...</xsd:unsignedLong>

xsd:unsignedShort Corresponds to a 16-bit unsigned integer in the range 0 to 65535. The type
declaration is:

typedef unsigned short xsd unsignedShort;

Type xsd unsginedShort declares an unsigned short 16-bit integer which is encoded as

77

<xsd:unsignedShort xsi:type="xsd:unsignedShort">...</xsd:unsignedShort>

Other XML schema types such as gYearMonth, gYear, gMonthDay, gDay, xsd:gMonth, QName, NOTATION,
etc., can be encoded similarly using a typedef declaration.

9.2.1 How to Use Multiple C/C++ Types for a Single Primitive XSD Type

Trailing underscores (see Section 8.3) can be used in the type name in a typedef to enable the
declaration of multiple storage formats for a single XML schema type. For example, one part
of a C/C++ application’s data structure may use plain strings while another part may use wide
character strings. To enable this simultaneous use, declare:

typedef char *xsd string;
typedef wchar t *xsd string ;

Now, the xsd string and xsd string types will both be encoded and decoded as XML string types
and the use of trailing underscores allows multiple declarations for a single XML schema type.

9.2.2 How to use Wrapper Classes to Specify Polymorphic Primitive Types

SOAP 1.1 supports polymorphic types, because XML schema types form a hierarchy. The root of
the hierarchy is called xsd:anyType (xsd:ur-type in the older 1999 schema). So, for example, an
array of xsd:anyType in SOAP may actually contain any mix of element types that are the derived
types of the root type. The use of polymorphic types is indicated by the WSDL and schema
descriptions of a Web service and can therefore be predicted/expected for each particular case.

On the one hand, the typedef construct provides a convenient way to associate C/C++ types with
XML schema types and makes it easy to incorporate these types in a (legacy) C/C++ application.
However, on the other hand the typedef declarations cannot be used to support polymorphic XML
schema types. Most SOAP clients and services do not use polymorphic types. In case they do,
the primitive polymorphic types can be declared as a hierarchy of C++ classes that can be used
simultaneously with the typedef declarations.

The general form of a primitive type declaration that is derived from a super type is:

class xsd type name: [public xsd super type name]
{ public: Type item;

[public:] [private] [protected:]
method1;
method2;
...
};

where Type is a primitive C type. The item field MUST be the first field in this wrapper class.

For example, the XML schema type hierarchy can be copied to C++ with the following declarations:

class xsd anyType { };
class xsd anySimpleType: public xsd anyType { };
typedef char *xsd anyURI;

78

class xsd anyURI : public xsd anySimpleType { public: xsd anyURI item; };
typedef bool xsd boolean;
class xsd boolean : public xsd anySimpleType { public: xsd boolean item; };
typedef char *xsd date;
class xsd date : public xsd anySimpleType { public: xsd date item; };
typedef time t xsd dateTime;
class xsd dateTime : public xsd anySimpleType { public: xsd dateTime item; };
typedef double xsd double;
class xsd double : public xsd anySimpleType { public: xsd double item; };
typedef char *xsd duration;
class xsd duration : public xsd anySimpleType { public: xsd duration item; };
typedef float xsd float;
class xsd float : public xsd anySimpleType { public: xsd float item; };
typedef char *xsd time;
class xsd time : public xsd anySimpleType { public: xsd time item; };
typedef char *xsd decimal;
class xsd decimal : public xsd anySimpleType { public: xsd decimal item; };
typedef char *xsd integer;
class xsd integer : public xsd decimal { public: xsd integer item; };
typedef LONG64 xsd long;
class xsd long : public xsd integer { public: xsd long item; };
typedef long xsd int;
class xsd int : public xsd long { public: xsd int item; };
typedef short xsd short;
class xsd short : public xsd int { public: xsd short item; };
typedef char xsd byte;
class xsd byte : public xsd short { public: xsd byte item; };
typedef char *xsd nonPositiveInteger;
class xsd nonPositiveInteger : public xsd integer { public: xsd nonPositiveInteger item; };
typedef char *xsd negativeInteger;
class xsd negativeInteger : public xsd nonPositiveInteger { public: xsd negativeInteger item;
};
typedef char *xsd nonNegativeInteger;
class xsd nonNegativeInteger : public xsd integer { public: xsd nonNegativeInteger item; };
typedef char *xsd positiveInteger;
class xsd positiveInteger : public xsd nonNegativeInteger { public: xsd positiveInteger item;
};
typedef ULONG64 xsd unsignedLong;
class xsd unsignedLong : public xsd nonNegativeInteger { public: xsd unsignedLong item;
};
typedef unsigned long xsd unsignedInt;
class xsd unsignedInt : public xsd unsginedLong { public: xsd unsignedInt item; };
typedef unsigned short xsd unsignedShort;
class xsd unsignedShort : public xsd unsignedInt { public: xsd unsignedShort item; };
typedef unsigned char xsd unsignedByte;
class xsd unsignedByte : public xsd unsignedShort { public: xsd unsignedByte item; };
typedef char *xsd string;
class xsd string : public xsd anySimpleType { public: xsd string item; };
typedef char *xsd normalizedString;
class xsd normalizedString : public xsd string { public: xsd normalizedString item; };
typedef char *xsd token;
class xsd token : public xsd normalizedString { public: xsd token item; };

79

Note the use of the trailing underscores for the class names to distinhuish the typedef type names
from the class names. Only the most frequently used built-in schema types are shown. It is also
allowed to include the xsd:base64Binray and xsd:hexBinary types in the hierarchy:

class xsd base64Binary: public xsd anySimpleType { public: unsigned char * ptr; int size;
};
class xsd hexBinary: public xsd anySimpleType { public: unsigned char * ptr; int size; };

See Sections 9.9 and 9.10.

Methods are allowed to be added to the classes above, such as constructors and getter/setter
methods.

Wrapper structs are supported as well, similar to wrapper classes. But thay cannot be used to
implement polymorphism. Rather, the wrapper structs facilitate the use of XML attributes with a
primitive typed object, see 9.5.5.

9.2.3 XML Schema Type Decoding Rules

The decoding rules for the primitive C and C++ data types is given in the table below:

80

Type Allows Decoding of Precision Lost?
bool [xsd:]boolean no
char* (C string) any type, see 9.2.5 no
wchar t * (wide string) any type, see 9.2.5 no

double [xsd:]double no
[xsd:]float no
[xsd:]long no
[xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedLong no
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no
[xsd:]decimal possibly
[xsd:]integer possibly
[xsd:]positiveInteger possibly
[xsd:]negativeInteger possibly
[xsd:]nonPositiveInteger possibly
[xsd:]nonNegativeInteger possibly

float [xsd:]float no
[xsd:]long no
[xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedLong no
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no
[xsd:]decimal possibly
[xsd:]integer possibly
[xsd:]positiveInteger possibly
[xsd:]negativeInteger possibly
[xsd:]nonPositiveInteger possibly
[xsd:]nonNegativeInteger possibly

long long [xsd:]long no
[xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedLong possibly
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no
[xsd:]integer possibly
[xsd:]positiveInteger possibly
[xsd:]negativeInteger possibly
[xsd:]nonPositiveInteger possibly
[xsd:]nonNegativeInteger possibly

81

Type Allows Decoding of Precision Lost?
long [xsd:]long possibly, if long is 32 bit

[xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedLong possibly
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no

int [xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedInt possibly
[xsd:]unsignedShort no
[xsd:]unsignedByte no

short [xsd:]short no
[xsd:]byte no
[xsd:]unsignedShort no
[xsd:]unsignedByte no

char [xsd:]byte no
[xsd:]unsignedByte possibly

unsigned long long [xsd:]unsignedLong no
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no
[xsd:]positiveInteger possibly
[xsd:]nonNegativeInteger possibly

unsigned long [xsd:]unsignedLong possibly, if long is 32 bit
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no

unsigned int [xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no

unsigned short [xsd:]unsignedShort no
[xsd:]unsignedByte no

unsigned char [xsd:]unsignedByte no

time t [xsd:]dateTime no(?)

Due to limitations in representation of certain primitive C++ types, a possible loss of accuracy may
occur with the decoding of certain XML schema types as is indicated in the table. The table does

82

not indicate the possible loss of precision of floating point values due to the textual representation
of floating point values in SOAP.

All explicitly declared XML schema encoded primitive types adhere to the same decoding rules.
For example, the following declaration:

typedef unsigned long long xsd nonNegativeInteger;

enables the encoding and decoding of xsd:nonNegativeInteger XML schema types (although de-
coding takes place with a possible loss of precision). The declaration also allows decoding of
xsd:positiveInteger XML schema types, because of the storage as a unsigned long long data type.

9.2.4 Multi-Reference Strings

If more than one char pointer points to the same string, the string is encoded as a multi-reference
value. Consider for example

char *s = ”hello”, *t = s;

The s and t variables are assigned the same string, and when serialized, t refers to the content of s:

<string id="123" xsi:type="string">hello</string>
...
<string href="#123"/>

The example assumed that s and t are encoded as independent elements.

Note: the use of typedef to declare a string type such as xsd string will not affect the multi-reference
string encoding. However, strings declared with different typedefs will never be considered multi-
reference even when they point to the same string. For example

typedef char *xsd string;
typedef char *xsd anyURI;
xsd anyURI *s = ”http://www.myservice.com”;
xsd string *t = s;

The variables s and t point to the same string, but since they are considered different types their
content will not be shared in the SOAP payload through a multi-referenced string.

9.2.5 “Smart String” Mixed-Content Decoding

The implementation of string decoding in gSOAP allows for mixed content decoding. If the SOAP
payload contains a complex data type in place of a string, the complex data type is decoded in the
string as plain XML text.

For example, suppose the getInfo remote method returns some detailed information. The remote
method is declared as:

// Contents of header file ”getInfo.h”:
getInfo(char *detail);

83

The proxy of the remote method is used by a client to request a piece of information and the service
responds with:

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: nnn

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"

<SOAP-ENV:Body>
<getInfoResponse>
<detail>
<picture>Mona Lisa by <i>Leonardo da Vinci</i></picture>
</detail>
</getInfoResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As a result of the mixed content decoding, the detail string contains “<picture>Mona Lisa by

<i>Leonardo da Vinci</i></picture>”.

9.2.6 Changing the Encoding Precision of float and double Types

The double encoding format is by default set to “%.18G” (see a manual on printf text formatting in
C), i.e. at most 18 digits of precision to limit a loss in accuracy. The float encoding format is by
default “%.9G”, i.e. at most 9 digits of precision.

The encoding format of a double type can be set by assigning a format string to soap.double format,
where soap is a variable that contains the current runtime environment. For example:

struct soap soap;
soap init(&soap); // sets double format = ”%.18G”
soap.double format = ”%e”; // redefine

which causes all doubles to be encoded in scientific notation. Likewise, the encoding format of a
float type can be set by assigning a format string to the static soap float format string variable. For
example:

struct soap soap;
soap init(&soap); // sets float format = ”%.9G”
soap.float format = ”%.4f”; // redefine

which causes all floats to be encoded with four digits precision.

Caution: The format strings are not automatically reset before or after SOAP communications.
An error in the format string may result in the incorrect encoding of floating point values.

84

9.2.7 INF, -INF, and NaN Values of float and double Types

The gSOAP runtime stdsoap2.cpp and header file stdsoap2.h support the marshalling of IEEE INF,
-INF, and NaN representations. Under certain circumstances this may break if the hardware and/or
C/C++ compiler does not support these representations. To remove the representations, remove
the inclusion of the ¡math.h¿ header file from the stdsoap2.h file. You can control the representations
as well, which are defined by the macros:

#define FLT NAN
#define FLT PINFTY
#define FLT NINFTY
#define DBL NAN
#define DBL PINFTY
#define DBL NINFTY

9.3 Enumeration Type Encoding and Decoding

Enumerations are generally useful for the declaration of named integer-valued constants, also called
enumeration constants.

9.3.1 Symbolic Encoding of Enumeration Constants

The gSOAP stub and skeleton compiler encodes the constants of enumeration-typed variables in
symbolic form using the names of the constants when possible to comply to SOAP’s XML schema
enumeration encoding style. Consider for example the following enumeration of weekdays:

enum weekday {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

The enumeration-constant Mon, for example, is encoded as

<weekday xsi:type="weekday">Mon</weekday>

The value of the xsi:type attribute is the enumeration-type identifier’s name. If the element is
independent as in the example above, the element name is the enumeration-type identifier’s name.

The encoding of complex types such as enumerations requires a reference to an XML schema
through the use of a namespace prefix. The namespace prefix can be specified as part of the
enumeration-type identifier’s name, with the usual namespace prefix conventions for identifiers.
This can be used to explicitly specify the encoding style. For example:

enum ns1 weekday {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

The enumeration-constant Sat, for example, is encoded as:

<ns1:weekday xsi:type="ns1:weekday">Sat</ns1:weekday>

The corresponding XML schema for this enumeration data type would be:

85

<xsd:element name="weekday" type="tns:weekday"/>
<xsd:simpleType name="weekday">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Mon"/>
<xsd:enumeration value="Tue"/>
<xsd:enumeration value="Wed"/>
<xsd:enumeration value="Thu"/>
<xsd:enumeration value="Fri"/>
<xsd:enumeration value="Sat"/>
<xsd:enumeration value="Sun"/>

</xsd:restriction>
</xsd:simpleType>

9.3.2 Literal Encoding of Enumeration Constants

If the value of an enumeration-typed variable has no corresponding named constant, the value is
encoded as a signed integer literal. For example, the following declaration of a workday enumeration
type lacks named constants for Saturday and Sunday:

enum ns1 workday {Mon, Tue, Wed, Thu, Fri};

If the constant 5 (Saturday) or 6 (Sunday) is assigned to a variable of the workday enumeration type,
the variable will be encoded with the integer literals 5 and 6, respectively. For example:

<ns1:workday xsi:type="ns1:workday">5</ns1:workday>

Since this is legal in C++ and SOAP allows enumeration constants to be integer literals, this
method ensures that non-symbolic enumeration constants are correctly communicated to another
party if the other party accepts literal enumeration constants (as with the gSOAP stub and skeleton
compiler).

Both symbolic and literal enumeration constants can be decoded.

To enforce the literal enumeration constant encoding and to get the literal constants in the WSDL
file, use the following trick:

enum ns1 nums { 1 = 1, 2 = 2, 3 = 3 };

The difference with an enumeration type without a list of values and the enumeration type above
is that the enumeration constants will appear in the WSDL service description.

9.3.3 Initialized Enumeration Constants

The gSOAP compiler supports the initialization of enumeration constants, as in:

enum ns1 relation {LESS = -1, EQUAL = 0, GREATER = 1};

The symbolic names LESS, EQUAL, and GREATER will appear in the SOAP payload for the encoding
of the ns1 relation enumeration values -1, 0, and 1, respectively.

86

9.3.4 How to “Reuse” Symbolic Enumeration Constants

A well-known deficiency of C and C++ enumeration types is the lack of support for the reuse
of symbolic names by multiple enumerations. That is, the names of all the symbolic constants
defined by an enumeration cannot be reused by another enumeration. To force encoding of the
same symbolic name by different enumerations, the identifier of the symbolic name can end in an
underscore () or any number of underscores to distinghuish it from other symbolic names in C++.
This guarantees that the SOAP encoding will use the same name, while the symbolic names can
be distinghuished in C++. Effectively, the underscores are removed from a symbolic name prior to
encoding.

Consider for example:

enum ns1 workday {Mon, Tue, Wed, Thu, Fri};
enum ns1 weekday {Mon , Tue , Wed , Thu , Fri , Sat , Sun };

which will result in the encoding of the constants of enum ns1 weekday without the underscore, for
example as Mon.

Caution: The following declaration:

enum ns1 workday {Mon, Tue, Wed, Thu, Fri};
enum ns1 weekday {Sat = 5, Sun = 6};

will not properly encode the weekday enumeration, because it lacks the named constants for workday

in its enumeration list.

9.3.5 Boolean Enumeration Type Encoding and Decoding for C Compilers

When a pure C compiler is used to create SOAP clients and services, the bool type may not
be supported by the compiler and in that case an enumeration type should be used. The C
enumeration-type encoding adopted by the gSOAP stub and skeleton compiler can be used to
encode boolean values according to the SOAP encoding style. The namespace prefix can be specified
with the usual namespace prefix convention for identifiers to explicitly specify the encoding style.
For example, the built-in boolean XML schema type supports the mathematical concept of binary-
valued logic. The boolean XML schema encoding style can be specified by using the xsd prefix.
For example:

enum xsd boolean {false , true };

The value false , for example, is encoded as:

<xsd:boolean xsi:type="xsd:boolean">false</xsd:boolean>

Peculiar of the SOAP boolean type encoding is that it only defines the values 0 and 1, while
the built-in XML schema boolean type also defines the false and true symbolic constants as valid
values. The following example declaration of an enumeration type lacks named constants altogether
to force encoding of the enumeration values as literal constants:

87

enum SOAP ENC boolean {};

The value 0, for example, is encoded with an integer literal:

<SOAP-ENC:boolean xsi:type="SOAP-ENC:boolean">0<SOAP-ENC:boolean>

9.3.6 Bitmask Enumeration Encoding and Decoding

A bitmask is an enumeration of flags such as declared with C#’s [Flags] enum annotation. gSOAP
supports bitmask encoding and decoding for interoperability. However, bitmask types are not
standardized with SOAP RPC.

A special syntactic convention is used in the header file input to the gSOAP compiler to indicate
the use of bitmasks with an asterisk:

enum * name { enum-constant, enum-constant, ... };

The gSOAP compiler will encode the enumeration constants as flags, i.e. as a series of powers of
2 starting with 1. The enumeration constants can be or-ed to form a bitvector (bitmask) which is
encoded and decoded as a list of symbolic values in SOAP. For example:

enum * ns machineStatus { ON, BELT, VALVE, HATCH};
int ns getMachineStatus(char *name, char *enum ns machineStatus result);

Note that the use of the enum does not require the asterisk, only the definition. The gSOAP
compiler generates the enumeration:

enum ns machineStatus { ON=1, BELT=2, VALVE=4, HATCH=8};

A remote method implementation in a Web service can return:

int ns getMachineStatus(struct soap *soap, char *name, enum ns machineStatus result)
{ ...

*result = BELT — HATCH;
return SOAP OK;

}

9.4 Struct Encoding and Decoding

A struct data type is encoded as a SOAP compound data type such that the struct name forms
the data type’s element name and schema type and the fields of the struct are the data type’s
accessors. This encoding is identical to the class instance encoding without inheritance and method
declarations, see Section 9.5 for further details. However, the encoding and decoding of structs is
more efficient compared to class instances due to the lack of inheritance and the requirement by
the marshalling routines to check inheritance properties at run time.

Certain fields of a struct can be (de)serialized as XML attributes. See 9.5.5 for more details.

88

9.5 Class Instance Encoding and Decoding

A class instance is encoded as a SOAP compound data type such that the class name forms the data
type’s element name and schema type and the data member fields are the data type’s accessors.
Only the data member fields are encoded in the SOAP payload. Class methods are not encoded.

The general form of a class declaration is:

class [namespace prefix]class name1 [:[public:] [private:] [protected:] [namespace prefix]class name2]
{

[public:] [private:] [protected:]
field1;
field2;
...
[public:] [private:] [protected:]
method1;
method2;
...

};

where

namespace prefix is the optional namespace prefix of the compound data type (see identifier trans-
lation rules 8.3)

class name1 is the element name of the compound data type (see identifier translation rules 8.3).

class name2 is an optional base class.

field is a field declaration (data member). A field MAY be declared static and const and MAY be
initialized.

method is a method declaration. A method MAY be declared virtual, but abstract methods are not
allowed. The method parameter declarations are REQUIRED to have parameter identifier
names.

[public:] [private:] [protected:] are OPTIONAL and have no effect on the declaration and MAY
therefore be ommitted. All access permissions are converted to public by the gSOAP stub
and skeleton compiler.

A class name is REQUIRED to be unique and cannot have the same name as a struct, enum, or
remote method name specified in the header file input to the gSOAP compiler. The reason is that
remote method requests are encoded similarly to class instances in SOAP and they are in principle
undistinghuishable (the method parameters are encoded just as the fields of a class).

Only single inheritance is supported by the gSOAP compiler. Multiple inheritance is not supported,
because of the limitations of the SOAP protocol.

If a constructor method is present, there MUST also be a constructor declaration with empty
parameter list.

Templates are not supported by the gSOAP compiler.

89

Certain fields of a class can be (de)serialized as XML attributes. See 9.5.5 for more details.

A class instance is encoded as:

<[namespace-prefix:]class-name xsi:type="[namespace-prefix:]class-name">
<basefield-name1 xsi:type="...">...</basefield-name1>
<basefield-name2 xsi:type="...">...</basefield-name2>
...
<field-name1 xsi:type="...">...</field-name1>
<field-name2 xsi:type="...">...</field-name2>
...
</[namespace-prefix:]class-name>

where the field-name accessors have element-name representations of the class fields and the
basefield-name accessors have element-name representations of the base class fields. (The optional
parts resulting from the specification are shown enclosed in [].)

The decoding of a class instance allows any ordering of the accessors in the SOAP payload. However,
if a base class field name is identical to a derived class field name because the field is overloaded,
the base class field name MUST precede the derived class field name in the SOAP payload for
decoding. gSOAP guarantees this, but interoperability with other SOAP implementations is cannot
be guaranteed.

9.5.1 Example

The following example declares a base class ns Object and a derived class ns Shape:

// Contents of file ”shape.h”:
class ns Object
{

public:
char *name;
};
class ns Shape : public ns Object
{

public:
int sides;
enum ns Color {Red, Green, Blue} color;
ns Shape();
ns Shape(int sides, enum ns Green color);
˜ns Shape();
};

The implementation of the methods of class ns Shape must not be part of the header file and need
to be defined elsewhere.

An instance of class ns Shape with name Triangle, 3 sides, and color Green is encoded as:

<ns:Shape xsi:type="ns:Shape">
<name xsi:type="string">Triangle</name>
<sides xsi:type="int">3</sides>
<color xsi:type="ns:Color">Green</color>
</ns:shape>

90

The namespace URI of the namespace prefix ns must be defined by a namespace mapping table,
see Section 8.4.

9.5.2 Initialized static const Fields

A data member field of a class declared as static const is initialized with a constant value at compile
time. This field is encoded in the serialization process, but is not decoded in the deserialization
process. For example:

// Contents of file ”triangle.h”:
class ns Triangle : public ns Object
{

public:
int size;
static const int sides = 3;
};

An instance of class ns Triangle is encoded in SOAP as:

<ns:Triangle xsi:type="ns:Triangle">
<name xsi:type="string">Triangle</name>
<size xsi:type="int">15</size>
<sides xsi:type="int">3>/sides>
</ns:Triangle>

Decoding will ignore the sides field’s value.

Caution: The current gSOAP implementation does not support encoding static const fields, due
to C++ compiler compatibility differences. This feature may be provided the future.

9.5.3 Class Methods

A class declaration in the header file input to the gSOAP compiler MAY include method declara-
tions. The method implementations MUST NOT be part of the header file but are required to be
defined in another C++ source that is externally linked with the application. This convention is
also used for the constructors and destructors of the class.

Dynamic binding is supported, so a method MAY be declared virtual.

9.5.4 Polymorphism, Derived Classes, and Dynamic Binding

Interoperability between client and service applications developed with gSOAP is established even
when clients and/or services use derived classes instead of the base classes used in the declaration
of the remote method parameters. A client application MAY use pointers to instances of derived
classes for the input parameters of a remote method. If the service was compiled with a declara-
tion and implementation of the derived class, the remote method base class input parameters are
demarshalled and a derived class instance is created instead of a base class instance. If the service
did not include a declaration of the derived class, the derived class fields are ignored and a base
class instance is created. Therefore, interoperability is guaranteed even when the client sends an
instance of a derived classes and when a service returns an instance of a derived class.

91

The following example declares Base and Derived classes and a remote method that takes a pointer
to a Base class instance and returns a Base class instance:

// Contents of file ”derived.h”
class Base
{

public:
char *name;
Base();
virtual void print();

};
class Derived : public Base
{

public:
int num;
Derived();
virtual void print();
};
int method(Base *in, struct methodResponse { Base *out; } &result);

This header file specification is processed by the gSOAP compiler to produce the stub and skeleton
routines which are used to implement a client and service. The pointer of the remote method is
also allowed to point to Derived class instances and these instances will be marshalled as Derived
class instances and send to a service, which is in accord to the usual semantics of parameter passing
in C++ with dynamic binding.

The Base and Derived class method implementations are:

// Method implementations of the Base and Derived classes:
#include ”soapH.h”
...
Base::Base()
{

cout << ”created a Base class instance” << endl;
}
Derived::Derived()
{

cout << ”created a Derived class instance” << endl;
}
Base::print()
{

cout << ”print(): Base class instance ” << name << endl;
}
Derived::print()
{

cout << ”print(): Derived class instance ” << name << ” ” << num << endl;
}

Below is an example CLIENT application that creates a Derived class instance that is passed as the
input parameter of the remote method:

// CLIENT
#include ”soapH.h”

92

int main()
{

struct soap soap;
soap init(&soap);
Derived obj1;
Base *obj2;
struct methodResponse r;
obj1.name = ”X”;
obj1.num = 3;
soap call method(&soap, url, action, &obj1, r);
r.obj2->print();
}
...

The following example SERVER1 application copies a class instance (Base or Derived class) from
the input to the output parameter:

// SERVER1
#include ”soapH.h”
int main()
{

soap serve(soap new());
}
int method(struct soap *soap, Base *obj1, struct methodResponse &result)
{

obj1->print();
result.obj2 = obj1;
return SOAP OK;
}
...

The following messages are produced by the CLIENT and SERVER1 applications:

CLIENT: created a Derived class instance
SERVER1: created a Derived class instance
SERVER1: print(): Derived class instance X 3
CLIENT: created a Derived class instance
CLIENT: print(): Derived class instance X 3

Which indicates that the derived class kept its identity when it passed through SERVER1. Note
that instances are created both by the CLIENT and SERVER1 by the demarshalling process.

Now suppose a service application is developed that only accepts Base class instances. The header
file is:

// Contents of file ”base.h”:
class Base
{

public:
char *name;
Base();
virtual void print();
};
int method(Base *in, Base *out);

93

This header file specification is processed by the gSOAP stub and skeleton compiler to produce
skeleton routine which is used to implement a service (so the client will still use the derived classes).

The method implementation of the Base class are:

// Method implementations of the Base class:
#include ”soapH.h”
...
Base::Base()
{

cout << ”created a Base class instance” << endl;
}
Base::print()
{

cout << ”print(): Base class instance ” << name << endl;
}

And the SERVER2 application is that uses the Base class is:

// SERVER2
#include ”soapH.h”
int main()
{

soap serve(soap new());
}
int method(struct soap *soap, Base *obj1, struct methodResponse &result)
{

obj1->print();
result.obj2 = obj1;
return SOAP OK;
}
...

Here are the messages produced by the CLIENT and SERVER2 applications:

CLIENT: created a Derived class instance
SERVER2: created a Base class instance
SERVER2: print(): Base class instance X
CLIENT: created a Base class instance
CLIENT: print(): Base class instance X

In this example, the object was passed as a Derived class instance to SERVER2. Since SERVER2

only implements the Base class, this object is converted to a Base class instance and send back to
CLIENT.

9.5.5 Struct/Class Encoding With XML Attributes

The SOAP RPC/LIT and SOAP DOC/LIT encoding styles support XML attributes in SOAP
messages while SOAP RPC with “Section 5” encoding does not support XML attributes other
than the SOAP and XSD specific attributes. SOAP RPC “Section 5” encoding has advantages for

94

cross-language interoperability and data encodings such as graph serialization. However, RPC/LIT
and DOC/LIT enables direct exchange of XML documents, which may include encoded application
data structures. Language interoperability is compromized, because no mapping between XML and
the typical language data types is defined. The meaning of the RPC/LIT and DOC/LIT XML
content is Schema driven rather than application/language driven.

gSOAP supports XML attribute (de)serialization for structs and classes. Attributes are primitive
XSD types, such as strings, enumerations, boolean, and numeric types. To declare an XML at-
tribute in a struct/class, the qualifier @ is used with the type of the attribute. The type must
be primitive type (including enumerations and strings), which can be declared with or without a
typedef to associate a XSD type with the C/C+ type. For example

typedef char *xsd string;
typedef bool *xsd boolean;
enum ns state { 0, 1, 2 };
struct ns myStruct
{

@ xsd string ns type; // encode as XML attribute ’ns:type’ of type ’xsd:string’
@ xsd boolean ns flag = false; // encode as XML attribute ’ns:flag’ of type ’xsd:boolean’
@ enum ns state ns state = 2; // encode as XML attribute ’ns:state’ of type ’ns:state’
struct ns myStruct *next;
};

The @ qualifier indicates XML attribute encoding for the ns type, ns flag, and ns state fields. Note
that the namespace prefix ns is used to distinghuish these attributes from any other attributes such
as xsi:type (ns:type is not to be confused with xsi:type).

Default values can be associated with any field that has a primitive type in a struct/class, as is
illustrated in this example. The default values are used when the receiving message does not contain
the corresponding values.

The XSD type QName plays a special role in gSOAP to ensure the decoding of the appropriate
namespace information from the XML message inbound. An attribute with type QName (Qualified
Name) contains an optional prefix and a local name. When declaring a QName XSD type as a
string with a typedef, the QName values are serialized as strings and the user is responsable to
ensure proper formatting of the string as a QName. For deserialization however, the QName string
is changed by replacing the namespace prefix with the namespace prefix defined in the namespace
mapping table. If the namespace mapping table has not entry for the namespace name (URI), then
the entire URI replaces the namespace prefix in the QName to ensure that this information is not
lost. For example

typedef char *xsd QName;
struct ns myStruct
{

@ xsd QName ns name = ”ns:abc”;
};

When the field ns name is serialized, the string contents are just send. Suppose that the inbound
value for the ns name is x:def, where the namespace name associated with the prefix x matches
the namespace name of the prefix ns (as defined in the namespace mapping table). Then, the value
is converted into ns:def to ensure proper mapping. If the namespace name is not in the table,

95

then x:def is converted to ”URI”:def where "URI" is the namespace URI bound to x in the message
received.

Because a remote method request and response is essentially a struct, XML attributes can also be
associated with method requests and responses. For example

typedef char *xsd string;
int ns myMethod(@ xsd string ns name, ...);

Attributes can also be attached to the dynamic arrays, binary types, and wrapper classes/structs
of primitive types. Wrapper classes are described in Section 9.2.2. For example

struct xsd string
{

char * item;
@ xsd boolean flag;
};

and

struct xsd base64Binary
{

unsigned char * ptr;
int size;
@ xsd boolean flag;
};

The attribute declarations MUST follow the item, ptr, and size fields which define the charac-
teristics of wrapper structs/classes and dynamic arrays.

Caution: Do not use XML attributes with SOAP RPC encoding, unless RPC/LIT is required.

9.6 Pointer Encoding and Decoding

The serialization of a pointer to a data type amounts to the serialization of the data type in SOAP
and the SOAP encoded representation of a pointer to the data type is indistinghuishable from the
encoded representation of the data type pointed to.

9.6.1 Multi-Reference Data

A data structure pointed to by more than one pointer is serialized as SOAP multi-reference data.
This means that the data will be serialized only once and identified with a unique id attribute. The
encoding of the pointers to the shared data is done through the use of href attributes to refer to the
multi-reference data (also see Section 7.10 on options to control the serialization of multi-reference
data). Cyclic C/C++ data structures are encoded with multi-reference SOAP encoding. Consider
for example the following a linked list data structure:

typedef char *xsd string;
struct ns list
{

96

xsd string value;
struct ns list *next;

};

Suppose a cyclic linked list is created. The first node contains the value ”abc” and points to a node
with value ”def” which in turn points to the first node. This is encoded as:

<ns:list id="1" xsi:type="ns:list">
<value xsi:type="xsd:string">abc</value>
<next xsi:type="ns:list">
<value xsi:type="xsd:string">def</value>
<next href="#1"/>

</next>
</ns:list>

In case multi-referenced data is received that “does not fit in a pointer-based structure”, the data is
copied. For example, the following two structs are similar, except that the first uses pointer-based
fields while the other uses non-pointer-based fields:

typedef long xsd int;
struct ns record
{

xsd int *a;
xsd int *b;
} P;
struct ns record
{

xsd int a;
xsd int b;
} R;
...

P.a = &n;
P.b = &n;

...

Since both a and b fields of P point to the same integer, the encoding of P is multi-reference:

<ns:record xsi:type="ns:record">

<b href="#1"/>

</ns:record>
<id id="1" xsi:type="xsd:int">123</id>

Now, the decoding of the content in the R data structure that does not use pointers to integers
results in a copy of each multi-reference integer. Note that the two structs resemble the same XML
data type because the trailing underscore will be ignored in XML encoding and decoding.

9.6.2 NULL Pointers and Nil Elements

A NULL pointer is not serialized, unless the pointer itself is pointed to by another pointer (but see
Section 7.10 to control the serialization of NULLs). For example:

97

struct X
{

int *p;
int **q;
}

Suppose pointer q points to pointer p and suppose p=NULL. In that case the p pointer is serialized
as

<... id="123" xsi:nil="true"/>

and the serialization of q refers to href="#123". Note that SOAP 1.1 does not support pointer to
pointer types (!), so this encoding is specific to gSOAP. The pointer to pointer encoding is rarely
used in codes anyway. More common is a pointer to a data type such as a struct with pointer fields.

Caution: When the deserializer encounters an XML element that has a xsi:nil="true" attribute
but the corresponding C++ data is not a pointer or reference, the deserializer will terminate with
a SOAP NULL fault when the SOAP XML NIL flag is set. The types section of a WSDL description
contains information on the “nilability” of data.

9.7 Fixed-Size Arrays

Fixed size arrays are encoded as per SOAP 1.1 one-dimensional array types. Multi-dimensional
fixed size arrays are encoded by gSOAP as nested one-dimensional arrays in SOAP. Encoding of
fixed size arrays supports partially transmitted and sparse array SOAP formats.

The decoding of (multi-dimensional) fixed-size arrays supports the SOAP multi-dimensional array
format as well as partially transmitted and sparse array formats.

An example:

// Contents of header file ”fixed.h”:
struct Example
{

float a[2][3];
};

This specifies a fixed-size array part of the struct Example. The encoding of array a is:

<a xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="float[][2]">
<SOAP-ENC:Array xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="float[3]"
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
</SOAP-ENC:Array>
<SOAP-ENC:Array xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="float[3]"
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
</SOAP-ENC:Array>

Caution: Any decoded parts of a (multi-dimensional) array that do not “fit” in the fixed size array
are ignored by the deserializer.

98

9.8 Dynamic Arrays

As the name suggests, dynamic arrays are much more flexible than fixed-size arrays and dynamic
arrays are better adaptabe to the SOAP encoding and decoding rules for arrays. In addition,
a typical C application allocates a dynamic array using malloc, assigns the location to a pointer
variable, and deallocates the array later with free. A typical C++ application allocates a dynamic
array using new, assigns the location to a pointer variable, and deallocates the array later with
delete. Such dynamic allocations are flexible, but pose a problem for the serialization of data: how
does the array serializer know the length of the array to be serialized given only a pointer to the
sequence of elements? The application stores the size information somewhere. This information
is crucial for the array serializer and has to be made explicitly known to the array serializer by
packaging the pointer and array size information within a struct or class.

9.8.1 One-Dimensional Dynamic Arrays

A special form of struct or class is used for one-dimensional dynamic arrays that contains a pointer
variable and a field that records the number of elements the pointer points to in memory.

The general form of the struct declaration for one-dimensional dynamic arrays is:

struct some name
{

Type * ptr;
int size;
[[static const] int offset [= ...];]
... // anything that follows here will be ignored
};

where Type MUST be a type associated with an XML schema or MUST be a primitive type. If
these conditions are not met, a list/vector (de)serialization is used (see Section 9.8.6). A primitive
type can be used with or without a typedef. If the array elements are structs or classes, then the
struct/class type names should have a namespace prefix for schema association, or they should be
other (nested) dynamic arrays.

An alternative to a struct is to use a class with optional methods that MUST appear after the ptr

and size fields:

class some name
{

public:
Type * ptr;
int size;
[[static const] int offset [= ...];]
method1;
method2;
... // any fields that follow will be ignored
};

To encode the data type as an array, the name of the struct or class SHOULD NOT have a
namespace prefix, otherwise the data type will be encoded and decoded as a SOAP list/vector, see
Section 9.8.6.

99

The deserializer of a dynamic array can decode partially transmitted and/or SOAP sparse arrays,
and even multi-dimensional arrays which will be collapsed into a one-dimensional array with row-
major ordering.

Caution: SOAP 1.2 does not support partially transmitted arrays. So the offset field of a dynamic
array is ignored.

9.8.2 Example

The following example header file specifies the XMethods Service Listing service getAllSOAPServices

remote method and an array of SOAPService data structures:

// Contents of file ”listing.h”:
class ns3 SOAPService
{

public:
int ID;
char *name;
char *owner;
char *description;
char *homepageURL;
char *endpoint;
char *SOAPAction;
char *methodNamespaceURI;
char *serviceStatus;
char *methodName;
char *dateCreated;
char *downloadURL;
char *wsdlURL;
char *instructions;
char *contactEmail;
char *serverImplementation;
};
class ServiceArray
{

public:
ns3 SOAPService * ptr; // points to array elements
int size; // number of elements pointed to
ServiceArray();
˜ServiceArray();
void print();
};
int ns getAllSOAPServices(ServiceArray &return);

An example client application:

#include ”soapH.h” ...
// ServiceArray class method implementations:
ServiceArray::ServiceArray()
{

ptr = NULL;
size = 0;

100

}
ServiceArray::˜ServiceArray()
{

if (ptr)
free(ptr);
size = 0;

}
void ServiceArray::print()
{

for (int i = 0; i ¡ size; i++)
cout << ptr[i].name << ”: ” << ptr[i].homepage << endl;

}
...
// Request a service listing and display results:
{

struct soap soap;
ServiceArray result;
const char *endpoint = ”www.xmethods.net:80/soap/servlet/rpcrouter”;
const char *action = ”urn:xmethodsServicesManager#getAllSOAPServices”;
...
soap init(&soap);
soap call ns getAllSOAPServices(&soap, endpoint, action, result);
result.print();
...
}

9.8.3 One-Dimensional Dynamic Arrays With Non-Zero Offset

The declaration of a dynamic array as described in 9.8 MAY include an int offset field. When set
to an integer value, the serializer of the dynamic array will use this field as the start index of the
array and the SOAP array offset attribute will be used in the SOAP payload.

For example, the following header file declares a mathematical Vector class, which is a dynamic
array of floating point values with an index that starts at 1:

// Contents of file ”vector.h”:
typedef float xsd float;
class Vector
{

xsd float * ptr;
int size;
int offset;
Vector();
Vector(int n);
float& operator[](int i);
}

The implementations of the Vector methods are:

Vector::Vector()
{

ptr = NULL;

101

size = 0;
offset = 1;

}
Vector::Vector(int n)
{

ptr = (float*)malloc(n*sizeof(float));
size = n;
offset = 1;

}
Vector::˜Vector()
{

if (ptr)
free(ptr);

}
float& Vector::operator[](int i)
{

return ptr[i- offset];
}

An example program fragment that serializes a vector of 3 elements:

struct soap soap;
soap init(&soap);
Vector v(3);
v[1] = 1.0;
v[2] = 2.0;
v[3] = 3.0;
soap begin(&soap);
v.serialize(&soap);
v.put("vec");
soap end(&soap);

The output is a partially transmitted array:

<vec xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:float[4]" SOAP-ENC:offset="[1]">
<item xsi:type="xsd:float">1.0</item>
<item xsi:type="xsd:float">2.0</item>
<item xsi:type="xsd:float">3.0</item>
</vec>

Note that the size of the encoded array is necessarily set to 4 and that the encoding omits the
non-existent element at index 0.

The decoding of a dynamic array with an offset field is more efficient than decoding a dy-
namic array without an offset field, because the offset field will be assigned the value of the
SOAP-ENC:offset attribute instead of padding the initial part of the array with default values.

9.8.4 Nested One-Dimensional Dynamic Arrays

One-dimensional dynamic arrays MAY be nested. For example, using class Vector declared in the
previous section, class Matrix is declared:

102

// Contents of file ”matrix.h”:
class Matrix
{

public:
Vector * ptr;
int size;
int offset;
Matrix();
Matrix(int n, int m);
˜Matrix();
Vector& operator[](int i);
};

The Matrix type is essentially an array of pointers to arrays which make up the rows of a matrix.
The encoding of the two-dimensional dynamic array in SOAP will be in nested form.

9.8.5 Multi-Dimensional Dynamic Arrays

The general form of the struct declaration for K-dimensional (K¿1) dynamic arrays is:

struct some name
{

Type * ptr;
int size[K];
int offset[K];
... // anything that follows here will be ignored
};

where Type MUST be a type associated with an XML schema, which means that it must be a
typedefed type in case of a primitive type, or a struct/class name with a namespace prefix for schema
association, or another dynamic array. If these conditions are not met, a list/vector (de)serialization
is used (see Section 9.8.6).

An alternative is to use a class with optional methods:

class some name
{

public:
Type * ptr;
int size[K];
int offset[K];
method1;
method2;
... // any fields that follow will be ignored
};

In the above, K is a constant denoting the number of dimensions of the multi-dimensional array.

To encode the data type as an array, the name of the struct or class SHOULD NOT have a
namespace prefix, otherwise the data type will be encoded and decoded as a SOAP list/vector, see
Section 9.8.6.

The deserializer of a dynamic array can decode partially transmitted multi-dimensional arrays.

103

For example, the following declaration specifies a matrix class:

typedef double xsd double;
class Matrix
{

public:
xsd double * ptr;
int size[2];
int offset[2];
};

In contrast to the matrix class of Section 9.8.4 that defined a matrix as an array of pointers to
matrix rows, this class has one pointer to a matrix stored in row-major order. The size of the
matrix is determined by the size field: size[0] holds the number of rows and size[1] holds the
number of columns of the matrix. Likewise, offset[0] is the row offset and offset[1] is the columns
offset.

9.8.6 Dynamic Array as List Encoding

In case the name of the struct or class of a dynamic array has a namespace prefix, the data type is
considered a list (a.k.a. vector) and will be serialized as a SOAP list and not encoded as a SOAP
array.

For example:

struct ns Map
{

struct ns Binding {char *key; char *val;} * ptr;
int size;
};

This declares a dynamic array, but the array will be serialized and deserialized as a list. For
example:

<ns:Map xsi:type="ns:Map">
<ns:Binding xsi:type="ns:Binding">
<key>Joe</key>
<val>555 77 1234</val>
</ns:Binding>
<ns:Binding xsi:type="ns:Binding">
<key>Susan</key>
<val>555 12 6725</val>
</ns:Binding>
<ns:Binding xsi:type="ns:Binding">
<key>Pete</key>
<val>555 99 4321</val>
</ns:Binding>
</ns:Map>

Deserialization is less efficient compared to an array, because the size of the list is not part of the
SOAP encoding. Internal buffering is used by the deserializer to collect the elements. When the

104

end of the list is reached, the buffered elements are copied to a newly allocated space on the heap
for the dynamic array.

A list (de)serialization is also in affect for dynamic arrays when the pointer field does not refer to
a type that is associated with a schema. For example:

struct vector
{

int * ptr;
int size;
};

Since int has no association with a schema, a vector structure X is serialized as:

<X>
<item>1</item>
<item>-2</item>
...
</X>

9.8.7 Polymorphic Dynamic Arrays and Lists

An array of pointers to class instances allows the encoding of polymorphic arrays (arrays of poly-
morphic element types) and lists. For example:

class ns Object
{

public:
...
};
class ns Data: public ns Object
{

public:
...
};
class ArrayOfObject
{

public:
ns Object ** ptr;
int size;
int offset;
};

The pointers in the array can point to the ns Object base class or ns Data derived class instances
which will be serialized and deserialized accordingly in SOAP. That is, the array elements are
polymorphic.

9.8.8 How to Change the Tag Names of the Elements of a SOAP Array or List

The ptr field in a struct or class declaration of a dynamic array may have an optional suffix part
that describes the name of the tags of the SOAP array XML elements. The suffix is part of the
field name:

105

Type * ptrarray elt name

The suffix describes the tag name to be used for all array elements. The usual identifier to XML
translations apply, see Section 8.3. The default XML element tag name for array elements is item

(which corresponds to the use of field name ptritem).

Consider for example:

struct ArrayOfstring
{

xsd string * ptrstring; int size; };

The array is serialized as:

<array xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[2]">
<string xsi:type="xsd:string">Hello</string>
<string xsi:type="xsd:string">World</string>
</array>

SOAP 1.1 and 1.2 do not require the use of a specific tag name for array elements. gSOAP will
deserialize a SOAP array while ignoring the tag names. Certain XML schemas used in doc/literal
encoding may require the declaration of arrray element tag names.

9.8.9 Embedded Arrays and Lists

An array (or list) can be embedded in a struct/class without the need to declare a separate array
data type. When a struct or class type declaration contains a int size field and the next field below
is a pointer type, gSOAP assumes the pointer type points to an array of values where the size

field holds the number of values at run time. Multiple arrays can be embedded in a struct/class by
using size field names that end with a unique name suffix.

The general convention for embedding arrays is:

struct ns SomeStruct
{

...
int sizename1; // number of elements pointed to
Type1 *field1; // by this field
...
int sizename2; // number of elements pointed to
Type2 *field2; // by this field
...
};

where name1 and name2 are identifiers used as a suffix to distinghuish the size field. These names
can be arbitrary and are not visible in XML.

For example, the following struct has two embedded arrays:

struct ns Contact
{

106

char *firstName;
char *lastName;
int sizePhones;
ULONG64 *phoneNumber; // array of phone numbers
int sizeEmails;
char **emailAddress; // array of email addresses
char *socSecNumber;
};

The XML serialization of an example ns Contact is:

<mycontact xsi:type="ns:Contact">
<firstName>Joe</firstName>
<lastName>Smith</lastName>
<phoneNumber>5551112222</phoneNumber>
<phoneNumber>5551234567</phoneNumber>
<phoneNumber>5552348901</phoneNumber>
<emailAddress>Joe.Smith@mail.com</emailAddress>
<emailAddress>Joe@Smith.com</emailAddress>
<socSecNumber>999999999</socSecNumber>

</mycontact>

9.9 Base64Binary XML Schema Type Encoding

The base64Binary XML schema type is a special form of dynamic array declared with a pointer
(ptr) to an unsigned char array.

For example using a struct:

struct xsd base64Binary
{

unsigned char * ptr;
int size;

};

Or with a class:

class xsd base64Binary
{

public:
unsigned char * ptr;
int size;
};

When compiled by the gSOAP stub and skeleton compiler, this header file specification will generate
base64Binary serializers and deserializers.

The SOAP ENC:base64 encoding is another type for base 64 binary encoding specified by the SOAP
data type schema and some SOAP applications may use this form (as indicated by their WSDL
descriptions). It is declared by:

struct SOAP ENC base64
{

107

unsigned char * ptr;
int size;

};

Or with a class:

class SOAP ENC base64
{

unsigned char * ptr;
int size;
};

When compiled by the gSOAP stub and skeleton compiler, this header file specification will generate
SOAP-ENC:base64 serializers and deserializers.

The advantage of using a class is that methods can be used to initialize and manipulate the ptr

and size fields. The user can add methods to this class to do this. For example:

class xsd base64Binary
{

public:
unsigned char * ptr;
int size;
xsd base64Binary(); // Constructor
xsd base64Binary(struct soap *soap, int n); // Constructor
˜xsd base64Binary(); // Destructor
unsigned char *location(); // returns the memory location
int size(); // returns the number of bytes
};

Here are example method implementations:

xsd base64Binary::xsd base64Binary()
{

ptr = NULL;
size = 0;

}
xsd base64Binary::xsd base64Binary(struct soap *soap, int n)
{

ptr = (unsigned int*)soap malloc(soap, n);
size = n;

}
xsd base64Binary::˜xsd base64Binary()
{ }
unsigned char *xsd base64Binary::location()
{

return ptr;
}
int xsd base64Binary::size()
{

return size;
}

108

The following example in C/C++ reads from a raw image file and encodes the image in SOAP
using the base64Binary type:

...
FILE *fd = fopen("image.jpg", "r");
xsd base64Binary image(filesize(fd));
fread(image.location(), image.size(), 1, fd);
fclose(fd);
soap begin(&soap);
image.soap serialize(&soap);
image.soap put(&soap, "jpegimage", NULL);
soap end(&soap);
...

where filesize is a function that returns the size of a file given a file descriptor.

Reading the xsd:base64Binary encoded image.

...
xsd base64Binary image;
soap begin(&soap);
image.get(&soap, "jpegimage");
soap end(&soap);
...

The struct or class name soap enc base64 should be used for SOAP-ENC:base64 schema type instead
of xsd base64Binary.

9.10 hexBinary XML Schema Type Encoding

The hexBinary XML schema type is a special form of dynamic array declared with the name
xsd hexBinary and a pointer (ptr) to an unsigned char array.

For example, using a struct:

struct xsd hexBinary
{

unsigned char * ptr;
int size;

};

Or using a class:

class xsd hexBinary
{

public:
unsigned char * ptr;
int size;
};

When compiled by the gSOAP stub and skeleton compiler, this header file specification will generate
base64Binary serializers and deserializers.

109

9.11 Doc/Literal XML Encoding Style

gSOAP supports doc/literal SOAP encoding of request and/or response messages. However, the
XML schema of the message data must be known in order for the gSOAP compiler to generate the
(de)serialization routines. In addition, arbitrary XML documents can be (de)serialized into regular
C strings or wide character strings (wchar t*) by gSOAP. Because XML documents are stored in
strings, an application may need a “plug-in” XML parser to decode XML content stored in strings.
For details on (de)serialization XML into strings, see Section 9.11.1.

gSOAP supports doc/literal SOAP encoding either manually by setting the values of soap.encodingStyle,
soap.defaultNamespace, and by using the flag SOAP XML TREE for output mode in your code, or
automatically by using a gSOAP directive in the header file. In most doc/literal cases, the
SOAP-ENV:encodingStyle attribute needs to be absent. To do this, set soap.encodingStyle=NULL.
Furthermore, a default namespace needs to be defined by setting soap.defaultNamespace. Finally,
doc/literal is a limited form of serialization and does not support graphs. So setting the flag
SOAP XML TREE will produce tree-structured output preventing multi-reference data. Note that
cyclic data will crash the doc/literal serializer because of this setting. Also polymorphic data may
cause deserialization problems due to the absense of type information in the SOAP payload (which
makes us wonder why doc/literal is the default in .NET).

The LocalTimeByZipCode remote method of the LocalTime service provides the local time given a
zip code and uses doc/literal SOAP encoding (using MS .NET). The following header file declares
the method:

int LocalTimeByZipCode(char *ZipCode, char **LocalTimeByZipCodeResult);

Note that none of the data types need to be namespace qualified using namespace prefixes. The
use of namespace prefixes is optional for doc/literal in gSOAP. When used, the XML document
will include xsi:type attributes.

To illustrate the manual doc/literal setting, the following client program sets the required properties
before the call:

#include ”soapH.h”
int main()
{

struct soap soap;
char *t;
soap init(&soap);
soap.encodingStyle = NULL; // don’t use SOAP encoding
soap.defaultNamespace = ”http://alethea.net/webservices/”; // use the service’s namespace
soap set omode(&soap, SOAP XML TREE);” // don’t produce multi-ref data (but can accept)
if (soap call LocalTimeByZipCode(&soap, ”http://alethea.net/webservices/LocalTime.asmx”, ”http://alethea.net/webservices/LocalTimeByZipCode”,

”32306”, &t))
soap print fault(&soap, stderr);

else
printf(”Time = %s\n”, t);

return 0;
}
struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},

110

{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”, ”http://www.w3.org/*/XMLSchema-

instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”, ”http://www.w3.org/*/XMLSchema”},
{NULL, NULL}
};

The SOAP request is:

POST /webservices/LocalTime.asmx HTTP/1.0
Host: alethea.net
Content-Type: text/xml; charset=utf-8
Content-Length: 479
SOAPAction: "http://alethea.net/webservices/LocalTimeByZipCode"

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://alethea.net/webservices/">
<SOAP-ENV:Body>

<LocalTimeByZipCode><ZipCode>32306</ZipCode></LocalTimeByZipCode>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Alternatively, the settings can be automatically set by including gSOAP directives in the header
file:

//gsoap ns service name: localtime
//gsoap ns service encoding: literal
//gsoap ns service namespace: http://alethea.net/webservices/
int ns LocalTimeByZipCode(char *ZipCode, char **LocalTimeByZipCodeResult);

In this case, the method name requires to be associated with a schema through a namespace prefix,
e.g. ns is used in this example. See Section 13.2 for more details on gSOAP directives. With these
directives, the gSOAP compiler generates client and server sources with the specified settings. The
directives are required to produce a WSDL file for a new service that uses doc/literal encoding.

The example client program can be simplified into:

#include ”soapH.h”
#include ”localtime.nsmap” // include generated map file
int main()
{

struct soap soap;
char *t;
soap init(&soap);
if (soap call ns LocalTimeByZipCode(&soap, ”http://alethea.net/webservices/LocalTime.asmx”,

”http://alethea.net/webservices/LocalTimeByZipCode”, ”32306”, &t))
soap print fault(&soap, stderr);

111

else
printf(”Time = %s\n”, t);

return 0;
}

9.11.1 Serializing and Deserializing XML Into Strings

To declare a literal XML “type” to hold XML documents in regular strings, use:

typedef char *XML;

To declare a literal XML “type” to hold XML documents in wide character strings, use:

typedef wchar t *XML;

Note: only one of the two storage formats can be used. The differences between the use of regular
strings versus wide character strings for XML documents are:

• Regular strings for XML documents MUST hold UTF-8 encoded XML documents. That is,
the string MUST contain the proper UTF-8 encoding to exchange the XML document in
SOAP messages.

• Wide character strings for XML documents SHOULD NOT hold UTF-8 encoded XML doc-
uments. Instead, the UTF-8 translation is done automatically by the gSOAP runtime mar-
shalling routines.

Literal XML encoding should only use one input parameter and one output parameter. Here is
an example of a remote method specification in which the parameters of the remote method uses
literal XML encoding to pass an XML document to a service and back:

typedef char *XML;
ns GetDocument(XML m XMLDoc, XML &m XMLDoc);

The ns Document is essentially a struct that forms the root of the XML document. The use of the
underscore in the ns Document response part of the message avoids the name clash between the
structs. Assuming that the namespace mapping table contains the binding of ns to http://my.org/

and the binding of m to http://my.org/mydoc.xsd, the XML message is:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns="http://my.org/"
xmlns:m="http://my.org/mydoc.xsd"
SOAP-ENV:encodingStyle="">
<SOAP-ENV:Body>
<ns:GetDocument>

112

<XMLDoc xmlns="http://my.org/mydoc.xsd">
...

</XMLDoc>
</ns:Document>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Important: the literal XML encoding style MUST be specified by setting soap.encodingStyle, where
soap is a variable that contains the current runtime environment. For example, to specify no
constraints on the encoding style (which is typical) use NULL:

struct soap soap;
soap init(&soap);
soap.encodingStyle = NULL;

As a result, the SOAP-ENV:encodingStyle attribute will not appear in the SOAP payload.

For interoperability with Apache SOAP, use

struct soap soap;
soap init(&soap);
soap.encodingStyle = ”http://xml.apache.org/xml-soap/literalxml”;

The name of the response element can be changed (default is the remote method name ending with
Response). For example:

typedef char *XML;
ns GetDocument(struct soap *soap, XML m XMLDoc, struct ns Document { XML m XMLDoc;
} &result);

10 SOAP Fault Processing

A predeclared standard SOAP Fault data structure is generated by the gSOAP stub and skeleton
compiler for exchanging exception messages. This predeclared data structure is:

struct SOAP ENV Fault
{

char *faultcode;
char *faultstring;
char *faultactor;
char *detail;
char *SOAP ENV Code;
char *SOAP ENV Reason;
char *SOAP ENV Detail;
};

The first four fields are SOAP 1.1 specific. The last three fields are SOAP 1.2 specific. The data
structure can be changed to the need of an application. To do this, include a new declaration of a
struct SOAP ENV Fault in the header file input to the gSOAP compiler to replace the built-in data
structure. For example:

113

struct SOAP ENV Fault
{

char *faultcode; // MUST be string
char *faultstring; // MUST be string
char *faultactor;
Detail *detail; // new detail field
char *SOAP ENV Code; // MUST be string
char *SOAP ENV Reason; // MUST be string
char *SOAP ENV Detail; // MUST be string
Detail SOAP ENVB Detail; // new SOAP 1.2 detail field
};

where Detail is some data type that holds application specific data such as a stack dump.

When the skeleton of a remote method returns an error (see Section 8.2), then soap.fault contains
the SOAP Fault data at the receiving side (client).

When a remote method wants to raise an exception, it does so by assigning the fault field of the
current reference to the runtime environment with appropriate data associated with the exception
and by returning the error SOAP FAULT. For example:

soap receiver fault(soap, ”Stack dump”, NULL);
if (soap-¿version == 2)

soap->fault->SOAP ENV Detail = sp; // SOAP 1.2: point to stack
else

soap->fault->detail = sp; // SOAP 1.1: point to stack
return SOAP Fault; // return from remote method call

When soap fault allocates a fault struct, this data is removed with the soap end call (or soap dealloc).
Note that the soap receiver fault function is called to allocate the fault struct and set the fault
string and detail fields, i.e. soap receiver fault(soap, ”Stack dump”, NULL). The advantage is that this
is independent of SOAP 1.1 and SOAP 1.2. However, setting the custom detail fields requires
inspecting the SOAP version used, using the soap-¿version attribute which is 1 for SOAP 1.1 and 2
for SOAP 1.2.

Each remote method implementation in a service application can return a SOAP Fault upon an
exception by returning an error code, see Section 6.2.1 for details and an example. In addition, a
SOAP Fault can be returned by a service application through calling the soap send fault function.
This is useful in case the initialization of the application fails, as illustrated in the example below:

int main()
{

struct soap soap;
soap init(&soap);
some initialization code
if (initialization failed)
{

soap.error = soap receiver fault(&soap, ”Init failed”, ”...”); // set the error condition (SOAP FAULT)
soap send fault(&soap); // Send SOAP Fault to client
return 0; // Terminate

}
}

114

11 SOAP Header Processing

A predeclared standard SOAP Header data structure is generated by the gSOAP stub and skeleton
compiler for exchanging SOAP messages with SOAP Headers. This predeclared data structure is:

struct SOAP ENV Header
{ void *dummy;
};

which declares and empty header (some C and C++ compilers don’t accept empty structs so a
transient dummy field is provided).

To adapt the data structure to a specific need for SOAP Header processing, a new struct SOAP ENV Header

can be added to the header file input to the gSOAP compiler. A class for the SOAP Header data
structure can be used instead of a struct.

For example, the following header can be used for transaction control:

struct SOAP ENV Header
{ char *t transaction;
};

with client-side code:

struct soap soap;
soap init(&soap);

...
soap.header = NULL; // do not use a SOAP Header for the request (as set with soap init)
soap.actor = NULL; // do not use an actor (receiver is actor)
soap call method(&soap, ...);
if (soap.header) // a SOAP Header was received

cout << soap.header->t transaction;
// Can reset, modify, or set soap.header here before next call
soap call method(&soap, ...); // reuse the SOAP Header of the service response for the request
...

The SOAP Web service response can include a SOAP Header with a transaction number that the
client is supposed to use for the next remote method invocation to the service. Therefore, the next
request includes a transaction number:

...
<SOAP-ENV:Envelope ...>
<SOAP-ENV:Header>
<t:transaction xsi:type="int">12345</t:transaction>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
...
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This is just an example and the transaction control is not a feature of SOAP but can be added
on by the application layer to implement stateful transactions between clients and services. At the

115

client side, the soap.actor attribute can be set to indicate the recipient of the header (the SOAP
SOAP-ENV:actor attribute).

A Web service can read and set the SOAP Header as follows:

int main()
{

struct soap soap;
soap.actor = NULL; // use this to accept all headers (default)
soap.actor = ”http://some/actor”; // accept headers destined for ”http://some/actor” only
soap serve(&soap);
}
...
int method(struct soap *soap, ...)
{

if (soap->header) // a Header was received
... = soap->header->t transaction;

else
soap->header = soap malloc(sizeof(struct SOAP ENV Header)); // alloc new header

... soap->header->t transaction = ...;
return SOAP OK;
}

See Section 13.2 on how to generate WSDL with the proper method-to-header-part bindings.

The SOAP-ENV:mustUnderstand attribute indicates the requirement that the recipient of the SOAP
Header (who must correspond to the SOAP-ENV:actor attribute when present or when the attribute
has the value SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next") MUST handle the
Header part that carries the attribute. gSOAP handles this automatically on the background.
However, an application still needs to inspect the header part’s value and handle it appropriately.
If a remote method in a Web service is not able to do this, it should return SOAP MUSTUNDERSTAND

to indicate this failure.

The syntax for the header file input to the gSOAP compiler is extended with a special storage
qualifier mustUnderstand. This qualifier can be used in the SOAP Header declaration to indicate
which parts should carry a SOAP-ENV:mustUnderstand=”1” attrbute. For example:

struct SOAP ENV Header
{

char *t transaction;
mustUnderstand char *t authentication;
};

When both fields are set and soap.actor=”http://some/actor” then the message contains:

<SOAP-ENV:Envelope ...>
<SOAP-ENV:Header>
<t:transaction>5</t:transaction>
<t:authentication SOAP-ENV:actor="http://some/actor" SOAP-ENV:mustUnderstand="1">XX</t:authentication>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
...
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

116

12 DIME Attachment Processing

gSOAP can transmit binary data with DIME attachments with or without streaming. With DIME
output streaming, the binary data is retrieved from an application’s data source at run time in
parts without storing the entire content. With DIME input streaming, the binary data will be
handed to the application in parts. DIME streaming is implemented with function callbacks. See
Section 12.2 for more details.

12.1 Non-Streaming DIME

Without streaming, the binary data is stored in augmented xsd:base64Binary and xsd:hexBinary

structs/classes. These structs/classes have three additional fields: an id field for attachment ref-
erencing (typically a content id (CID) or UUID), a type field to specify the MIME type of the
binary data, and an options field to piggy-back additional information with a DIME attachment.
DIME attachment support is fully automatic, which means that gSOAP will test for the presence
of attachments at run time and use SOAP in DIME accordingly.

A xsd:base64Binary type with DIME attachment support is declared by

struct xsd base64Binary
{

unsigned char * ptr;
int size;
char *id;
char *type;
char *options;
};

The specification order of the fields is significant. In addition, no other fields or methods may be
declared before any of these fields in the struct/class, but additional fields and methods can appear
after the field declarations. A xsd:hexBinary declaration is similar. When the id field and/or type field
is non-NULL during run-time serialization of the data, DIME attachment transmission is used for
the entire SOAP message, as per SOAP in DIME specifications. When only the type field is set,
gSOAP will assign a default DIME id to the attachment (see also below). The options field is an
optional string with a special layout: the first two bytes are reserved for the option type, the next
two bytes store the size of the option data, followed by the option data. The function

char *soap option(struct soap *soap, unsigned short type, const char *option)

returns a string with this encoding. For example

struct xsd base64Binary image;
image. ptr = ...;
image. size = ...;
image.id = ”uuid:09233523-345b-4351-b623-5dsf35sgs5d6”;
image.type = ”image/jpeg”;
image.options = soap option(soap, 0, ”My wedding picture”);

When receiving DIME attachments, the fields will be set according to the DIME attachment con-
tent. If binary data is received without attachments, the id, type, options fields are all NULL. Note

117

that SOAP messages may contain binary data that references external resources not provided as
attachments. In that case, the ptr field is NULL and the id field refers to the external data source.
Non-augmented binary data types xsd:base64Binary and xsd:hexBinary can be used to receive
DIME attachments, but the id, type, and options information are absent. Also DIME attachments
can be received and stored in strings, but not send from strings.

When necessary, the xsd:base64Binary schema type and its attachment-based counterpart can be
specified with class inheritance. For example:

class xsd base64Binary
{

unsigned char * ptr;
int size;
};
class xsd base64Binary : xsd base64Binary
{

char *id;
char *type;
char *options;
};

The dime id format attribute of the current gSOAP run-time environment can be set to the default
format of DIME id fields. The format string MUST contain a %d format specifier (or any other
int-based format specifier). The value of this specifier is a non-negative integer, with zero being the
value of the DIME attachment id for the SOAP message. For example,

struct soap soap;
soap init(&soap);
soap.dime id format = ”uuid:09233523-345b-4351-b623-5dsf35sgs5d6-%x”;

As a result, all attachments with a NULL id field will use a gSOAP-generated id value based on
the format string.

12.2 Streaming DIME

Three function callbacks for streaming DIME output and three callbacks for streaming DIME input
are available. These callbacks are used to access application data resources during transmission.

118

Callback (function pointer)
void *(*soap.fdimereadopen)(struct soap *soap, void *handle, const char *id, const char *type, const
char *options)
Called by the gSOAP run-time DIME attachment sender to start reading from a (binary) data
source for outbound transmission. The content will be read from the application’s data source in
chunks using the fdimeread callback and streamed into the SOAP/XML/DIME output stream. The
handle contains the value of the ptr field of an attachment struct/class, which could be a pointer
to specific information such as a file descriptor or a pointer to a string to be passed to this callback.
Both ptr and size fields should have been set by the application prior to the serialization of the
content. The id, type, and options arguments are the DIME id, type, and options, respectively. The
callback should return handle, or another pointer value which will be passed as a handle to fdimeread
and fdimereadclose. The callback should return NULL and set soap->error when an error occurred.
The callback should return NULL (and not set soap->error) when this particular DIME attachment
is not to be streamed.
size t (*soap.fdimeread)(struct soap *soap, void *handle, char *buf, size t len)
Called by the gSOAP run-time DIME attachment sender to read more data from a (binary) data
source for streaming into the output stream. The handle contains the value returned by the fdimeread-
open callback. The buf argument is the buffer of length len into which a chunk of data should be
stored. The actual amount of data stored in the buffer might be less than len and the amount
should be returned by the application. A return value of 0 indicates an error. The size field of
the attachment struct/class should have been set by the application prior to the serialization of the
content. The value of size indicates the total size of the content to be transmitted.
void(*soap.fdimereadclose)(struct soap *soap, void *handle)
Called by the gSOAP run-time DIME attachment sender at the end of the streaming process to
close the data source. The handle contains the value returned by the fdimereadopen callback. The
fdimewriteclose callback is called after successfully transmitting the data or when an error occurred.
void *(*soap.fdimewriteopen)(struct soap *soap, const char *id, const char *type, const char *op-
tions)
Called by the gSOAP run-time DIME attachment receiver to start writing an inbound DIME at-
tachment to an application’s data store. The content is streamed into an application data store
through multiple fdimewrite calls from the gSOAP attachment receiver. The id, type, and options
arguments are the DIME id, type, and options, respectively. The callback should return a handle
which is passed to the fdimewrite and fdimewriteclose callbacks. The ptr field of the attachment
struct/class is set to the value of this handle. The size field is set to the total size of the attachment
after receving the entire content. The size is unknown in advance because a DIME attachment may
be chunked.
int (*soap.fdimewrite)(struct soap *soap, void *handle, const char *buf, size t len)
Called by the gSOAP run-time DIME attachment receiver to write part of an inbound DIME attach-
ment to an application’s data store. The handle contains the value returned by the fdimewriteopen
callback. The buf argument contains the data of length len. The callback should return a gSOAP
error code (e.g. SOAP OK when no error occurred).
void(*soap.fdimewriteclose)(struct soap *soap, void *handle)
Called by the gSOAP run-time DIME attachment receiver at the end of the streaming process to
close the data store. The fdimewriteclose callback is called after successfully receiving the data or
when an error occurred. The handle contains the value returned by the fdimewriteopen callback.

In addition, a void*user field in the struct soap data structure is available to pass user-defined data
to the callbacks.

The following example illustrates the client-side initialization of an image attachment struct to
stream a file into a DIME attachment:

119

int main()
{

struct soap soap;
struct xsd base64Binary image;
FILE *fd;
struct stat sb;
soap init(&soap);
if (!fstat(fileno(fd), &sb) && sb.st size > 0)
{ // because we can get the length of the file, we can stream it

soap.fdimereadopen = dime read open;
soap.fdimereadclose = dime read close;
soap.fdimeread = dime read;
image. ptr = (unsigned char*)fd; // must set to non-NULL (this is our fd handle which we

need in the callbacks)
image. size = sb.st size; // must set size

}
else
{ // don’t know the size, so buffer it

size t i;
int c;
image. ptr = (unsigned char*)soap malloc(&soap, MAX FILE SIZE);
for (i = 0; i < MAX FILE SIZE; i++)
{

if ((c = fgetc(fd)) == EOF)
break;

image. ptr[i] = c;
}
fclose(fd);
image. size = i;
}
image.type = ”image/jpeg”;
image.options = soap dime option(&soap, 0, ”My picture”);
soap call ns method(&soap, ...);
...
}
void *dime read open(struct soap *soap, void *handle, const char *id, const char *type, const
char *options)
{ return handle;
}
void dime read close(struct soap *soap, void *handle)
{ fclose((FILE*)handle);
}
size t dime read(struct soap *soap, void *handle, char *buf, size t len)
{ return fread(buf, 1, len, (FILE*)handle);
}

The following example illustrates the streaming of a DIME attachment into a file by a client:

int main()
{ struct soap soap;

soap init(&soap);
soap.fdimewriteopen = dime write open;
soap.fdimewriteclose = dime write close;

120

soap.fdimewrite = dime write;
soap call ns method(&soap, ...);
...
}
void *dime write open(struct soap *soap, const char *id, const char *type, const char *options)
{

FILE *handle = fopen(”somefile”, ”wb”);
if (!handle)
{

soap->error = SOAP EOF;
soap->errnum = errno; // get reason

}
return (void*)handle;

}
void dime write close(struct soap *soap, void *handle)
{ fclose((FILE*)handle);
}
int dime write(struct soap *soap, void *handle, const char *buf, size t len)
{

size t nwritten;
while (len)
{

nwritten = fwrite(buf, 1, len, (FILE*)handle);
if (!nwritten)
{

soap->errnum = errno; // get reason
return SOAP EOF;
}
len -= nwritten;
buf += nwritten;
}
return SOAP OK;
}

13 Advanced Features

13.1 Internationalization

The use of wide-character strings (wchar t*) in C and C++ clients and services suffices for inter-
nationalization. In contrast, when strings with wide characters are received and stored in regular
strings, only the lower 8 bits of the wide characters are retained. The SOAP C UTFSTRING flag can
be set to enable send and/or receive of wide-characters with regular strings. With this flag set, text
will be stored in UTF8 format in the strings directly, which means that character codes 1 to 127
are treated as plain ASCII. Codes with the MSB set are UTF8-encoded characters. Please consult
the UTF8 specification for details.

13.2 Customizing the WSDL and Namespace Mapping Table File Contents

A header file can be augmented with directives for the gSOAP Stub and Skeleton compiler to
automatically generate customized WSDL and namespace mapping tables contents. The WSDL

121

and namespace mapping table files do not need to be modified by hand (Sections 6.2.5 and 8.4).
In addition, the sample SOAP/XML request and response files generated by the compiler are valid
provided that XML schema namespace information is added to the header file with directives so
that the gSOAP compiler can produce example SOAP/XML messages that are correctly namespace
qualified. These compiler directive are specified as //-comments.

Three directives are currently supported that can be used to specify details associated with names-
pace prefixes used by the remote method names in the header file. To specify the name of a Web
Service in the header file, use:

//gsoap namespace-prefix service name: service-name

where namespace-prefix is a namespace prefix used by identifiers in the header file and service-name
is the name of a Web Service (only required to create new Web Services). The name may be followed
by text up to the end of the line which is incorporated into the WSDL service documentation.
Alternatively, the service documentation can be provided with the directive below.

To specify the documentation of a Web Service in the header file, use:

//gsoap namespace-prefix service documentation: text

where namespace-prefix is a namespace prefix used by identifiers in the header file and text is the
documentation text up to the end of the line. The text is incorporated into the WSDL service
documentation.

To specify the portType of a Web Service in the header file, use:

//gsoap namespace-prefix service portType: portType

where namespace-prefix is a namespace prefix used by identifiers in the header file and portType is
the portType name of the WSDL service portType.

To specify the location (or port endpoint) of a Web Service in the header file, use:

//gsoap namespace-prefix service location: URL

or alternatively

//gsoap namespace-prefix service port: URL

where URL is the location of the Web Service (only required to create new Web Services). The
URL specifies the path to the service executable (so URL/service-executable is the actual location of
the executable when declared).

To specify the name of the executable of a Web Service in the header file, use:

//gsoap namespace-prefix service executable: executable-name

where executable-name is the name of the executable of the Web Service.

To specify the namespace URI of a Web Service in the header file, use:

//gsoap namespace-prefix service namespace: namespace-URI

122

where namespace-URI is the URI associated with the namespace prefix.

In addition, the schema namespace URI can be specified in the header file:

//gsoap namespace-prefix schema namespace: namespace-URI

where namespace-URI is the schema URI associated with the namespace prefix. If present, it
defines the schema-part of the generated WSDL file and the URI in the namespace mapping table.
This declaration is useful when the service declares its own data types that need to be associated
with a namespace. Furthermore, the header file for client applications do not need the full service
details and the specification of the schema namespaces for namespace prefixes suffices.

To document a method, use:

//gsoap namespace-prefix service method-documentation: method-name //text

where method-name is the unqualified name of the method and text is a line of text terminated
by a newline. Do not use any XML reserved characters in text such as < and >. Use XML and
XHTML markup instead. For example:

//gsoap ns service method-documentation: getQuote This method returns a stock quote
int ns getQuote(char *symbol, float & result);

To specify the SOAPAction for a method, use:

//gsoap namespace-prefix service method-action: method-name action

where method-name is the unqualified name of the method and action is a quoted or non-quoted
string (spaces and blanks are not allowed). For example:

//gsoap ns service method-action: getQuote ””
int ns getQuote(char *symbol, float & result);

When header processing is required, each method declared in the WSDL should provide a binding
to the parts of the header that may appear as part of a method request message. Such a binding
is given by:

//gsoap namespace-prefix service method-header-part: method-name header-part

For example:

struct SOAP ENV Header
{

char *h transaction;
struct UserAuth *h authentication;
};

Suppose method ns login uses both header parts (at most), then this is declared as:

//gsoap ns service method-header-part: login transaction
//gsoap ns service method-header-part: login authentication
int ns login(...);

123

Suppose method ns search uses only the first header part (at most), then this is declared as:

//gsoap ns service method-header-part: search transaction
int ns search(...);

Note that the method name and header part names in the directive are left unqualified.

To specify the header parts for the method input (method request message), use:

//gsoap namespace-prefix service method-input-header-part: method-name header-part

Similarly, to specify the header parts for the method output (method response message), use:

//gsoap namespace-prefix service method-output-header-part: method-name header-part

The declarations above only affect the WSDL. It’s the application’s responsibility to set and reset
the header messages.

When doc/literal encoding is required, the service encoding can be specified in the header file:

//gsoap namespace-prefix service encoding: literal

or when the SOAP-ENV:encodingStyle attribute is different from the SOAP 1.1 encoding style:

//gsoap namespace-prefix service encoding: encoding-style

(Note: blanks can be used anywhere in the directive, except between // and gsoap.)

The use of these directive is best illustrated with an example. The quotex.h header file of the quotex

example in the gSOAP distribution for Unix/Linux is:

//gsoap ns1 service namespace: urn:xmethods-delayed-quotes
int ns1 getQuote(char *symbol, float &result);

//gsoap ns2 service namespace: urn:xmethods-CurrencyExchange
int ns2 getRate(char *country1, char *country2, float &result);

//gsoap ns3 service name: quotex
//gsoap ns3 service location: http://www.cs.fsu.edu/˜engelen
//gsoap ns3 service namespace: urn:quotex
int ns3 getQuote(char *symbol, char *country, float &result);

The quotex example is a new Web Service created by combining two existing Web Services: the
XMethods Delayed Stock Quote service and XMethods Currency Exchange service.

Namespace prefix ns3 is used for the new quotex Web Service with namespace URI urn:quotex, service
name quotex, and location http://www.cs.fsu.edu/˜engelen. Since the new Web Service invokes the
ns1 getQuote and ns2 getRate remote methods, the service namespaces of these methods are given.
The service names and locations of these methods are not given because they are only required for
setting up a new Web Service for these methods (but may also be provided in the header file for
documentation purposes). After invoking the gSOAP Stub and Skeleton compiler on the quotex.h

header file:

124

soapcpp2 quotex.h

the WSDL of the new quotex Web Service is saved as quotex.wsdl. Since the service name (quotex), lo-
cation (http://www.cs.fsu.edu/˜engelen), and namespace URI (urn:quotex) were provided in the header
file, the generated WSDL file does not need to be changed by hand and can be published imme-
diately together with the compiled Web Service installed as a CGI application at the designated
URL (http://www.cs.fsu.edu/˜engelen/quotex.cgi and http://www.cs.fsu.edu/˜engelen/quotex.wsdl).

The namespace mapping table for the quotex.cpp Web Service implementation is saved as quo-

tex.nsmap. This file can be directly included in quotex.cpp instead of specified by hand in the source
of quotex.cpp:

#include ”quotex.nsmap”

The automatic generation and inclusion of the namespace mapping table requires compiler directives
for all namespace prefixes to associate each namespace prefix with a namespace URI. Otherwise,
namespace URIs have to be manually added to the table (they appear as http://tempuri.org).

13.3 How to Specify minOccurs and maxOccurs Schema Attributes

By default, gSOAP generates WSDL and schemas with minOccurs=1 and maxOccurs=1 for non-array
types, and minOccurs=0 and maxOccurs=unbounded for array types. The minOccurs and maxOccurs

attribute values of fields in struct and class types are specified as

Type fieldname [minOccurs[:maxOccurs]] [= value]

The minOccurs and maxOccurs values must be integer literals.

For example

struct ns MyRecord
{

int n;
int m 0;
int size 0:10;
int *item;
}

gSOAP generates:

<complexType name="MyRecord">
<all>
<element name="n" type="xsd:int" minOccurs="1" maxOccurs="1"/>
<element name="m" type="xsd:int" minOccurs="0" maxOccurs="1"/>
<element name="item" type="xsd:int" minOccurs="0" maxOccurs="10"/>

</all>
</complexType>

125

13.4 Transient Data Types

There are situations when certain data types have to be ignored by gSOAP for the compilation of
(de)marshalling routines. For example, in certain cases the fields in a class or struct need not be
(de)serialized, or the base class of a derived class should not be (de)serialized, and certain built-
in classes such as ostream cannot be (de)serialized. These data types (including fields) are called
“transient” and can be declared outside of gSOAP’s compilation window. Transient data type and
transient fields are declared with the extern keyword or are declared within [and] blocks in the
header file input to the gSOAP compiler. The extern keyword has a special meaning to the gSOAP
compiler and won’t affect the generated codes. The special [and] block construct can be used with
data type declarations and within struct and class declarations. The use of extern or [] achieve the
same effect, but [] may be more convenient to encapsulate transient types in a larger part of the
header file. The use of extern with typedef is reserved for the declaration of user-defined external
(de)serializers for data types, see Section 13.5.

First example:

extern class ostream; // ostream can’t be (de)serialized, but need to be declared to make it visible
to gSOAP
class ns myClass
{ ...

virtual void print(ostream &s) const; // need ostream here
...

};

Second example:

[
class myBase // base class need not be (de)serialized
{ ... };

]
class ns myDerived : myBase
{ ... };

Third example:

[typedef int transientInt;]
class ns myClass
{

int a; // will be (de)serialized
[
int b; // transient field
char s[256]; // transient field
]
extern float d; // transient field
char *t; // will be (de)serialized
transientInt *n; // transient field
[
virtual void method(char buf[1024]); // does not create a char[1024] (de)serializer
]
};

126

In this example, class ns myClass has three transient fields: b, s, and n which will not be (de)serialized
in SOAP. Field n is transient because the type is declared within a transient block. Pointers,
references, and arrays of transient types are transient. The single class method is encapsulated
within [and] to prevent gSOAP from creating (de)serializers for the char[1024] type. gSOAP will
generate (de)serializers for all types that are not declared within a [and] transient block.

Functions prototypes of remote methods cannot be declared transient and will result in errors when
attempted.

13.5 How to Declare User-Defined Serializers and Deserializers

Users can declare their own (de)serializers for specific data types instead of relying on the gSOAP-
generated (de)serializers. To declare a external (de)serializer, declare a type with extern typedef.
gSOAP will not generate the (de)serialzers for the type name that is declared. For example:

extern typedef char *MyData;
struct Sample
{

MyData s; // use user-defined (de)serializer for this field
char *t; // use gSOAP (de)serializer for this field
};

The user is required to supply the following routines for each extern typedef’ed name T:

void soap mark T(struct soap *soap, const T *a)
void soap default T(struct soap *soap, T *a)
void soap out T(struct soap *soap, const char *tag, int id, const T *a, const char *type)
T *soap in T(struct soap *soap, const char *tag, T *a, const char *type)

The function prototypes can be found in soapH.h.

For example, the (de)serialization of MyData can be done with the following code:

void soap mark MyData(struct soap *soap, MyData *const*a)
{ } // no need to mark this node (for multi-ref and cycle detection)
void soap default MyData(&soap, MyData **a)
{ *a = NULL }
void soap out MyData(struct soap *soap, const char *tag, int id, MyData *const*a, const char
*type)
{

soap element begin out(soap, tag, id, type); // print XML beginning tag
soap send(soap, *a); // just print the string (no XML conversion)
soap element end out(soap, tag); // print XML ending tag
}
MyData **soap in MyData(struct soap *soap, const char *tag, MyData **a, const char *type)
{

if (soap element begin in(soap, tag))
return NULL;

if (!a)
a = (MyData**)soap malloc(soap, sizeof(MyData*));

if (soap->null)
*a = NULL; // xsi:nil element

127

if (*soap->type && soap match tag(soap, soap->type, type))
{

soap->error = SOAP TYPE MISMATCH;
return NULL; // type mismatch
}
if (*soap->href)

a = (MyData**)soap id forward(soap, soap-¿href, a, SOAP MyData, sizeof(MyData*))
else if (soap->body)
{

char *s = soap value(soap); // fill buffer
a = (char)soap malloc(soap, strlen(s)+1);
strcpy(*a, s);
}
if (soap-¿body && soap element end in(soap, tag))

return NULL;
return a;

More information on custom (de)serialization will be provided in this document or in a separate
document in the future. The writing of the (de)serializer code requires the use of the low-level
gSOAP API.

13.6 How to Serialize Data Without Generating XSD Type Attributes

gSOAP serializes data in XML with xsi:type attributes when the types are declared with namespace
prefixes to indicate the type of the data contained in the elements. SOAP 1.1 and 1.2 requires
xsi:type attributes in the presence of polymorphic data or when the type of the data cannot be
deduced from the SOAP payload.

To omit the generation of xsi:type attributes in the serialization, simply use type declarations that
do not include namespace prefixes. The only remaining issue is the (de)serialization of lists/vectors
with typed elements. To declare a list/vector with typed elements, use a leading underscores for
type names of the struct or class. The leading underscores in type names makes type anonymous
(invisible in XML).

13.7 Function Callbacks for Customized I/O and HTTP Handling

gSOAP provides five callback functions for customized I/O and HTTP handling:

128

Callback (function pointer)
int (*soap.fopen)(struct soap *soap, const char *endpoint, const char *host, int port)
Called from a client proxy to open a connection to a Web Service located at endpoint. Input
parameters host and port are micro-parsed from endpoint. Should return a valid file descriptor, or
-1 and soap->error set to an error code. Built-in gSOAP function: tcp connect
int (*soap.fpost)(struct soap *soap, const char *endpoint, const char *host, int port, const char
*path, const char *action, size t count)
Called from a client proxy to generate the HTTP header to connect to endpoint. Input parameters
host, port, and path are micro-parsed from endpoint, action is the SOAP action, and count is the
length of the SOAP message or 0 when SOAP ENC XML is set or when SOAP IO LENGTH is reset.
Use function soap send(struct soap *soap, char *s) to write the header contents. Should return
SOAP OK, or a gSOAP error code. Built-in gSOAP function: http post.
int (*soap.fposthdr)(struct soap *soap, const char *key, const char *val)
Called by http post and http response (through the callbacks). Emits HTTP key: val header entries.
Should return SOAP OK, or a gSOAP error code. Built-in gSOAP function: http post header.
int (*soap.fresponse)(struct soap *soap, int soap error code, size t count)
Called from a service to generate the response HTTP header. Input parameter soap error code
is a gSOAP error code (see Section 8.2 and count is the length of the SOAP message or 0 when
SOAP ENC XML is set or when SOAP IO LENGTH is reset. Use function soap send(struct soap
*soap, char *s) to write the header contents. Should return SOAP OK, or a gSOAP error code
Built-in gSOAP function: http response
int (*soap.fparse)(struct soap *soap)
Called by client proxy and service to parse an HTTP header (if present). When user-defined, this
routine must at least skip the header. Use function int soap getline(struct soap *soap, char *buf, int
len) to read HTTP header lines into a buffer buf of length len (returns empty line at end of HTTP
header). Should return SOAP OK, or a gSOAP error code. Built-in gSOAP function: http parse
int (*soap.fparsehdr)(struct soap *soap, const char *key, const char *val)
Called by http parse (through the fparse callback). Handles HTTP key: val header entries to set
gSOAP’s internals. Should return SOAP OK, or a gSOAP error code. Built-in gSOAP function:
http parse header
int (*soap.fclose)(struct soap *soap)
Called by client proxy multiple times, to close a socket connection before a new socket connection
is established and at the end of communications when the SOAP IO KEEPALIVE flag is not set and
soap.keep alive6=0 (indicating that the other party supports keep alive). Should return SOAP OK,
or a gSOAP error code. Built-in gSOAP function: tcp disconnect
int (*soap.fsend)(struct soap *soap, const char *s, size t n)
Called for all send operations to emit contents of s of length n. Should return SOAP OK, or a
gSOAP error code. Built-in gSOAP function: fsend
size t (*soap.frecv)(struct soap *soap, char *s, size t n)
Called for all receive operations to fill buffer s of maximum length n. Should return the number of
bytes read or 0 in case of an error, e.g. EOF. Built-in gSOAP function: frecv
int (*soap fignore)(struct soap *soap, const char *tag)
Called when an unknown XML element was encountered on the input and tag is the of-
fending XML element tag name. Should return SOAP OK, or a gSOAP error code such as
SOAP MUSTUNDERSTAND to throw an exception. Built-in gSOAP function: fignore
int (*soap faccept)(struct soap *soap, struct sockaddr *a, int *n)
Called by soap accept. This is a wrapper routine for accept. Should return a valid socket descriptor
or -1 and set soap->error to an error code. Built-in gSOAP function: tcp accept

In addition, a void*user field in the struct soap data structure is available to pass user-defined data
to the callbacks.

129

The following example uses I/O function callbacks for customized serialization of data into a buffer
and deserialization back into a datastructure:

char buf[10000]; // XML buffer
int len1 = 0; // #chars written
int len2 = 0; // #chars read
// mysend: put XML in buf[]
int mysend(struct soap *soap, const char *s, size t n)
{

if (len1 + n > sizeof(buf))
return SOAP EOF;

strcpy(buf + len1, s);
len1 += n;
return SOAP OK;
}
// myrecv: get XML from buf[]
size t myrecv(struct soap *soap, char *s, size t n)
{

if (len2 + n > len1)
n = len1 - len2;

strncpy(s, buf + len2, n);
len2 += n;
return n;
}
main()
{

struct soap soap;
struct ns person p;
soap init(&soap);
len1 = len2 = 0; // reset buffer pointers
p.name = ”John Doe”;
p.age = 25;
soap.fsend = mysend; // assign callback
soap.frecv = myrecv; // assign callback
soap begin(&soap);
soap set omode(&soap, SOAP XML GRAPH);
soap serialize ns person(&soap, &p);
soap put ns person(&soap, &p, ”ns:person”, NULL);
if (soap.error)
{

soap print fault(&soap, stdout);
exit(1);

}
soap end(&soap);
soap begin(&soap);
soap get ns person(&soap, &p, ”ns:person”, NULL);
if (soap.error)
{

soap print fault(&soap, stdout);
exit(1);

}
soap end(&soap);
soap init(&soap); // disable callbacks

130

}

The soap done function can be called to reset the callback to the default internal gSOAP I/O and
HTTP handlers.

The following example illustrates customized I/O and (HTTP) header handling. The SOAP request
is saved to a file. The client proxy then reads the file contents as the service response. To perform
this trick, the service response has exactly the same structure as the request. This is declared by
the struct ns test output parameter part of the remote method declaration. This struct resembles
the service request (see the generated soapStub.h file created from the header file).

The header file is:

//gsoap ns service name: callback
//gsoap ns service namespace: urn:callback
struct ns person
{

char *name;
int age;

};
int ns test(struct ns person in, struct ns test &out);

The client program is:

#include ”soapH.h”
...
int myopen(struct soap *soap, const char *endpoint, const char *host, int port)
{

if (strncmp(endpoint, ”file:”, 5))
{

printf(”File name expected\n”);
return SOAP EOF;
}
if ((soap->sendfd = soap->recvfd = open(host, O RDWR|O CREAT, S IWUSR|S IRUSR)) < 0)

return SOAP EOF;
return SOAP OK;
}
void myclose(struct soap *soap)
{

if (soap->sendfd > 2) // still open?
close(soap->sendfd); // then close it

soap->recvfd = 0; // set back to stdin
soap->sendfd = 1; // set back to stdout
}
int mypost(struct soap *soap, const char *endpoint, const char *host, const char *path, const
char *action, size t count)
{

return soap send(soap, ”Custom-generated file\n”); // writes to soap->sendfd
}
int myparse(struct soap *soap)
{

char buf[256];
if (lseek(soap->recvfd, 0, SEEK SET) < 0 —— soap getline(soap, buf, 256)) // go to begin and

131

skip custom header
return SOAP EOF;

return SOAP OK;
}
main()
{

structsoap soap;
struct ns test r;
struct ns person p;
soap init(&soap); // reset
p.name = ”John Doe”;
p.age = 99;
soap.fopen = myopen; // use custom open
soap.fpost = mypost; // use custom post
soap.fparse = myparse; // use custom response parser
soap.fclose = myclose; // use custom close
soap call ns test(&soap, ”file://test.xml”, ””, p, r);
if (soap.error)
{

soap print fault(&soap, stdout);
exit(1);

}
soap end(&soap);
soap init(&soap); // reset to default callbacks

}

SOAP 1.1 and 1.2 specify that XML elements may be ignored when present in a SOAP payload
on the receiving side. gSOAP ignores XML elements that are unknown, unless the XML attribute
mustUnderstand="true" is present in the XML element. It may be undesirable for elements to be
ignored when the outcome of the omission is uncertain. The soap.fignore callback can be set to a func-
tion that returns SOAP OK in case the element can be safely ignored, or SOAP MUSTUNDERSTAND

to throw an exception, or to perform some application-specific action. For example, to throw an
exception as soon as an unknown element is encountered on the input, use:

int myignore(struct soap *soap, const char *tag)
{

return SOAP MUSTUNDERSTAND; // never skip elements (secure)
}
...
soap.fignore = myignore;
soap call ns method(&soap, ...); // or soap serve(&soap);

To selectively throw an exception as soon as an unknown element is encountered but element ns:xyz
can be safely ignored, use:

int myignore(struct soap *soap, const char *tag)
{

if (soap match tag(soap, tag, ”ns:xyz”) != SOAP OK)
return SOAP MUSTUNDERSTAND;

return SOAP OK;
}
...

132

soap.fignore = myignore;
soap call ns method(&soap, ...); // or soap serve(&soap)
...
struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”,”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/1999/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/1999/XMLSchema”},
{”ns”, ”some-URI”}, // the namespace of element ns:xyz
{NULL, NULL}

Function soap match tag compares two tags. The third parameter may be a pattern where * is a
wildcard and - is a single character wildcard. So for example soap match tag(tag, ”ns:*”) will match
any element in namespace ns or when no namespace prefix is present in the XML message.

The callback can also be used to keep track of unknown elements in an internal data structure such
as a list:

struct Unknown
{

char *tag;
struct Unknown *next;

};
int myignore(struct soap *soap, const char *tag)
{

char *s = (char*)soap malloc(soap, strlen(tag)+1);
struct Unknown *u = (struct Unknown*)soap malloc(soap, sizeof(struct Unknown));
if (s && u)
{

strcpy(s, tag);
u->tag = s;
u->next = ulist;
ulist = u;
}
}
...
struct soap *soap;
struct Unknown *ulist = NULL;
soap init(&soap);
soap.fignore = myignore;
soap call ns method(&soap, ...); // or soap serve(&soap)
// print the list of unknown elements
soap end(&soap); // clean up

13.8 Speed Improvement Tips

Here are some tips you can use to speed up gSOAP. gSOAP’s default settings are choosen to
maximize portability and compatibility. The settings can be tweeked to optimize the performance
as follows:

133

• Increase the buffer size SOAP BUFLEN by changing the SOAP BUFLEN macro in stdsoap2.h. Use
buffer size 65536 for example.

• Use HTTP keep-alive at the client-side, see 13.10, when the client needs to make a series
of calls to the same server. Server-side keep-alive support can greatly improve performance
of both client and server. But be aware that clients and services under Unix/Linux require
signal handlers to catch dropped connections.

• Use HTTP chunked transfers, see 13.11.

• Do NOT use gzip compression, even when transferring data over a modem connection.
Modems already compress data transfers.

13.9 HTTP 1.0 and 1.1

gSOAP uses HTTP 1.0 by default. gSOAP supports HTTP 1.1, but does not support all HTTP 1.1
transfer encodings such as gzipped encodings. gSOAP does support HTTP 1.1 chunked-transfer
encoding. Nevertheless, the the HTTP version used can be changed by setting the attribute:

struct soap soap;
soap init(&soap);
...
soap.http version = ”1.1”;

13.10 HTTP Keep-Alive

gSOAP supports keep-alive socket connections. To activate keep-alive support, set the SOAP IO KEEPALIVE

flag for both input and output modes, see Section 7.10. For example

struct soap soap;
soap init2(&soap, SOAP IO KEEPALIVE, SOAP IO KEEPALIVE);

When a client or a service communicates with another client or service that supports keep alive, the
attribute soap.keep alive will be set to 1, otherwize it is reset to 0 (indicating that the other party will
close the connection). The connection maybe terminated on either end before the communication
completed, for example when the server keep-alive connection has timed out. This generates a
”Broken Pipe” signal on Unix/Linux platforms. This signal can be caught with a signal handler:

signal(SIGPIPE, sigpipe handle);

where, for example:

void sigpipe handle(int x) { }

Alternatively, broken pipes can be kept silent by setting:

soap.socket flags = MSG NOSIGNAL;

134

This setting will not generate a sigpipe but read/write operations return SOAP EOF instead. Note
that Win32 systems do not support signals and lack the MSG NOSIGNAL flag. The sigpipe handling
and flags are not very portable.

A connection will be kept open only if the request contains an HTTP 1.0 header with ”Connection:
Keep-Alive” or an HTTP 1.1 header that does not contain ”Connection: close”. This means
that a gSOAP client method call should use ”http://” in the endpoint URL of the request to the
stand-alone service to ensure HTTP headers are used.

If the client does not close the connection, the server will wait forever when no recv timeout is
specified. In addition, other clients will be denied service as long as a client keeps the connection
to the server open. To prevent this from happening, the service should be multi-threaded such that
each thread handles the client connection:

int main(int argc, char **argv)
{

struct soap soap, *tsoap;
pthread t tid;
int m, s;
soap init2(&soap, SOAP IO KEEPALIVE, SOAP IO KEEPALIVE);
soap.accept timeout = 600; // optional: let server time out after ten minutes of inactivity
m = soap bind(&soap, NULL, 18000, BACKLOG); // use port 18000 on the current machine
if (m < 0)
{

soap print fault(&soap, stderr);
exit(1);

}
fprintf(stderr, "Socket connection successful %d\n", m);
for (count = 0; count >= 0; count++)
{

soap.socket flags = MSG NOSIGNAL; // use this
soap.accept flags = SO NOSIGPIPE; // or this to prevent sigpipe
s = soap accept(&soap);
if (s < 0)
{

if (soap.errnum)
soap print fault(&soap, stderr);

else
fprintf(stderr, "Server timed out\n"); // Assume timeout is long enough for threads to

complete serving requests
break;
}
fprintf(stderr, "Accepts socket %d connection from IP %d.%d.%d.%d\n", s, (int)(soap.ip>>24)&0xFF,

(int)(soap.ip>>16)&0xFF, (int)(soap.ip>>8)&0xFF, (int)soap.ip&0xFF);
tsoap = soap copy(&soap);
pthread create(&tid, NULL, (void*(*)(void*))process request, (void*)tsoap);
}
return 0;

}
void *process request(void *soap)
{

pthread detach(pthread self());
((struct soap*)soap)-¿recv timeout = 300; // Timeout after 5 minutes stall on recv

135

((struct soap*)soap)-¿send timeout = 60; // Timeout after 1 minute stall on send
soap serve((struct soap*)soap);
soap destroy((struct soap*)soap);
soap end((struct soap*)soap);
soap done((struct soap*)soap);
free(soap);
return NULL;

}

To prevent a malicious client from keeping a thread waiting forever by keeping the connection
open, timeouts are set in the process request routine. See Section 13.15 for more details on timeout
settings.

A gSOAP client call will automatically attempt to re-establish a connection to a server when the
server has terminated the connection for any reason. This way, a sequence of calls can be made
to the server while keeping the connection open. Client stubs will poll the server to check if
the connection is still open. When the connection was terminated by the server, the client will
automatically reconnect.

A client should reset SOAP IO KEEPALIVE just before the last call to a server to close the connection
after this last call. This will close the socket after the call and also informs the server to gracefully
close the connection.

13.11 HTTP Chunked Transfer Encoding

gSOAP supports HTTP chunked transfer encoding. Un-chunking of inbound messages takes place
automatically. Outbound messages are never chunked, except when the SOAP IO CHUNK flag is set
for the output mode. Most Web services, however, will not accept chunked inbound messages.

13.12 HTTP Buffered Sends

The entire outbound message can be stored to determine the HTTP content length rather than the
two-phase encoding used by gSOAP which requires a separate pass over the data to determine the
length of the outbound message. Setting the flag SOAP IO STORE for the output mode will buffer
the entire message. This can speed up the transmission of messages, depending on the content, but
may require significant storage space to hold the verbose XML message.

Zlib compressed transfers require buffering. The SOAP IO STORE flag is set when the SOAP ENC ZLIB

flag is set to send compressed messages. The use of chunking significantly reduces memory usage
and may speed up the transmission of compressed SOAP/XML messages. This is accomplished by
setting the SOAP IO CHUNK flag with SOAP ENC ZLIB for the output mode.

13.13 HTTP Authentication

HTTP authentication (basic) is enabled at the client-side by setting the soap.userid and soap.passwd

strings to a username and password, respectively. A server may request user authentication and
denies access (HTTP 401 error) when the client tries to connect without HTTP authentication (or
with the wrong authentication information).

Here is an example client code fragment to set the HTTP authentication username and password:

136

struct soap soap;
soap init(&soap);
soap.userid = ”guest”;
soap.passwd = ”visit”;
...

A client SOAP request will have the following HTTP header:

POST /XXX HTTP/1.0
Host: YYY
User-Agent: gSOAP/2.2
Content-Type: text/xml; charset=utf-8
Content-Length: nnn
Authorization: Basic Z3Vlc3Q6Z3Vlc3Q=
...

A client MUST set the soap.userid and soap.passwd strings for each call that requires client authen-
tication. The strings are reset after each successful or unsuccessful call.

A stand-alone gSOAP Web Service can enforce HTTP authentication upon clients, by checking
the soap.userid and soap.passwd strings. These strings are set when a client request contains HTTP
authentication headers. The strings SHOULD be checked in each service method (that requires
authentication to execute).

Here is an example service method implementation that enforced client authentication:

int ns method(struct soap *soap, ...)
{

if (!soap->.userid —— !soap->.passwd —— strcmp(soap->.userid, ”guest”) —— strcmp(soap->.passwd,
”visit”)) return soap sender fault(soap, ”Not authorized to invoke ns B method”, ”... details
...”); ...
}

When the authentication fails, the service response with a SOAP Fault message and an generic
HTTP error code (SOAP 1.1 gives HTTP 500 error). Note that this behavior is not consistent with
the behavior of a Web server that produces a HTTP 401 error upon a failed HTTP authentication.

13.14 HTTP Proxy Authentication

HTTP proxy authentication (basic) is enabled at the client-side by setting the soap.proxy userid and
soap.proxy passwd strings to a username and password, respectively. For example, a proxy server may
request user authentication. Otherwise, access is denied by the proxy (HTTP 407 error). Example
client code fragment to set proxy server, username, and password:

struct soap soap;
soap init(&soap);
soap.proxy host = ”xx.xx.xx.xx”; // IP
soap.proxy port = 8080;
soap.proxy userid = ”guest”;
soap.proxy passwd = ”guest”;
...

137

A client SOAP request will have the following HTTP header:

POST /XXX HTTP/1.0
Host: YYY
User-Agent: gSOAP/2.2
Content-Type: text/xml; charset=utf-8
Content-Length: nnn
Proxy-Authorization: Basic Z3Vlc3Q6Z3Vlc3Q=
...

13.15 Timeout Management for Non-Blocking Operations

Socket connect, accept, send, and receive timeout values can be set to manage socket communi-
cation timeouts. The soap.connect timeout, soap.accept timeout, soap.send timeout, and soap.recv timeout

attributes of the current gSOAP runtime environment soap can be set to the appropriate user-
defined socket send, receive, and accept timeout values. A positive value measures the timeout in
seconds. A negative timeout value measures the timeout in microseconds (10−6 sec).

The soap.connect timeout specifies the timeout value for soap call ns method calls.

The soap.accept timeout specifies the timeout value for soap accept(&soap) calls.

The soap.send timeout and soap.recv timeout specify the timeout values for non-blocking socket I/O
operations.

Example:

struct soap soap;
soap init(&soap);
soap.send timeout = 10;
soap.recv timeout = 10;

This will result in a timeout if no data can be send in 10 seconds and no data is received within
10 seconds after initiating a send or receive operation over the socket. A value of zero disables
timeout, for example:

soap.send timeout = 0;
soap.recv timeout = 0;

When a timeout occurs in send/receive operations, a SOAP EOF exception will be raised (“end of
file or no input”). Negative timeout values measure timeouts in microseconds, for example:

#define uSec *-1
#define mSec *-1000
soap.accept timeout = 10 uSec;
soap.send timeout = 20 mSec;
soap.recv timeout = 20 mSec;

The macros improve readability.

Caution: Many Linux versions do not support non-blocking connect(). Therefore, setting soap.connect timeout

for non-blocking soap call ns method calls may not work under Linux.

138

13.16 Socket Options and Flags

gSOAP’s socket communications can be controlled with socket options and flags. The gSOAP run-
time environment struct soap flags are: int soap.socket flags to control socket send() and recv() calls,
int soap.connect flags to set client connection socket options, int soap.bind flags to set server-side port
bind socket options, int soap.accept flags to set server-side request message accept socket options. See
the manual pages of send and recv for soap.socket flags values and see the manual pages of setsockopt

for soap.connect flags, soap.bind flags, and soap.accept flags (SOL SOCKET) values. These SO socket
option flags (see setsockopt manual pages) can be bit-wise or-ed to set multiple socket options at
once.

For example, to disable sigpipe signals on Unix/Linux platforms use: soap.socket flags=MSG NOSIGNAL

and/or soap.connect flags=SO NOSIGPIPE (i.e. client-side connect) depending on your platform.

Use soap.bind flags=SO REUSEADDR to enable server-side port reuse and local port sharing (but be
aware of the security issues when the port is not blocked by a firewall and open to the Internet).

13.17 Secure SOAP Clients with HTTPS/SSL

You need to install the OpenSSL library on your platform to enable secure SOAP clients to
utilize HTTPS/SSL. After installation, compile all the sources of your application with option
-DWITH OPENSSL. For example on Linux:

g++ -DWITH OPENSSL myclient.cpp stdsoap.cpp soapC.cpp soapClient.cpp -lssl -lcrypto

or Unix:

g++ -DWITH OPENSSL myclient.cpp stdsoap.cpp soapC.cpp soapClient.cpp -lxnet -lsocket -lnsl
-lssl -lcrypto

or you can add the following line to soapdefs.h:

#define WITH OPENSSL

and compile with option -DWITH SOAPDEFS H to include soapdefs.h in your project. A client program
simply uses the prefix https: instead of http: in the endpoint URL of a remote method call to a Web
Service to use encrypted transfers (if the service supports HTTPS). For example:

soap call ns mymethod(&soap, ”https://domain/path/secure.cgi”, ””, ...);

By default, server authentication is disabled. To enable server authentication, set the require server auth

attribute of the current gSOAP runtime environment (struct soap) before a call is made:

soap.require server auth = 1;

This will force server authentication for all calls over HTTPS.

Make sure you have signal handlers set in your application to catch broken connections (SIGPIPE):

signal(SIGPIPE, sigpipe handle);

where, for example:

void sigpipe handle(int x) { }

139

13.18 Secure SOAP Web Services with HTTPS/SSL

When a Web Service is installed as CGI, it uses standard I/O that is encryped/decrypted by the
Web server that runs the CGI application. Therefore, HTTPS/SSL support must be configured for
the Web server (not Web Service).

SSL support for stand-alone gSOAP Web services is accomplished by calling soap ssl accept after
soap accept. In addition, a key file, CA file, DH file (if RSA is not used), and password need
to be supplied. Instructions on how to do this can be found in the OpenSSL documentation
http://www.openssl.org. See also Section 13.19. To enable OpenSSL, first install OpenSSL and use
option -DWITH OPENSSL to compile the sources with your C or C++ compiler, for example:

g++ -DWITH OPENSSL -o myprog myprog.cpp stdsoap2.cpp soapC.cpp soapServer.cpp -lssl -
lcrypto

Let’s take a look at an example SSL secure multi-threaded stand-alone SOAP Web Service:

int main()
{

int m, s;
pthread t tid;
struct soap soap, *tsoap;
soap init(&soap);
// soap.rsa = 1; // use RSA (or use DH which requires a DH file: see below)
soap.keyfile = ”server.pem”; // must be resident key file
soap.cafile = ”cacert.pem”; // must be resident CA file
soap.dhfile = ”dh512.pem”; // if soap.rsa == 0, use DH with resident DH file
soap.password = ”password”; // password
soap.randfile = ”random.rnd”; // (optional) some file with random data to seed PRNG
m = soap bind(&soap, ”linprog2.cs.fsu.edu”, 18000, 100);
if (m < 0)
{

soap print fault(&soap, stderr);
exit(1);

}
fprintf(stderr, ”Socket connection successful: master socket = %d\n”, m);
for (;;)
{

s = soap accept(&soap);
fprintf(stderr, ”Socket connection successful: slave socket = %d\n”, s);
if (s < 0)
{

soap print fault(&soap, stderr);
exit(1);
}
if (soap ssl accept(&soap))
{

soap print fault(&soap, stderr);
exit(1);
}
tsoap = soap copy(&soap);
if (!tsoap)

exit(1);

140

pthread create(&tid, NULL, &process request, (void*)tsoap);
}
return 0;

}
void *process request(void *soap)
{

pthread detach(pthread self());
soap serve((struct soap*)soap);
soap end((struct soap*)soap);
free(soap);
return NULL;
}

In case Web services have to verify clients, use a key file, CA file, a file with random data, and
password in an SSL-enabled client:

...
soap init(&soap);
soap.keyfile = ”client.pem”;
soap.password = ”password”;
soap.cafile = ”cacert.pem”;
soap.randfile = ”random.rnd”;
if (soap call ns method(&soap, ”https://linprog2.cs.fsu.edu:18000”, ””, ...)
...

Make sure you have signal handlers set in your service and/or client applications to catch broken
connections (SIGPIPE):

signal(SIGPIPE, sigpipe handle);

where, for example:

void sigpipe handle(int x) { }

13.19 SSL Certificates

The .pem files in the gSOAP distribution are examples. Developers will have to generate certificates
as needed (client only, server only or both). There is more than one way to generate pem files for
clients and servers. Here is the simplest/quickest one:

Create a private Certificate Authority (CA). The CA is used in SSL to verify the authenticity of a
given certificate. The CA acts as a trusted third party who has authenticated the user of the signed
certificate as being who they say. The certificate is signed by the CA, and if the client trusts the
CA, it will trust your certificate. For use within your organization, a private CA will probably serve
your needs. However, if you intend use your certificates for a public service, you should probably
obtain a certificate from a known CA (e.g. VeriSign). In addition to identification, your certificate
is also used for encryption.

Creating a private CA:

• Go to the OpenSSL bin directory (/usr/local/ssl/misc by default and /System/Library/OpenSSL/misc

on Mac OS X).

141

• There should be a script called CA.sh (and a CA.pl that does the same stuff). This hides all
the gruesome details of how this works. Without the script this is a very annoying process.

• su to root

• Make sure that the OpenSSL bin directory is in your path.

• ./CA.sh -newca

• When prompted for CA filename hit return.

• Answer the rest of the questions intelligently. The common name would be how this certificate
might be referred to. For example, the Equifax Secure CA uses the common name of Equifax
Secure Certificate Authority. Do not forget the password!

Creating certificates should be done through a certificate authority to obtain signed certificates.
But you can create your own certificates for testing purposes as follows.

• ./CA.sh -newreq

• This creates an unsigned certificate request.

• The procedure is the same as creating a private CA except you’ll want to use the name of
the host that will use the certificate as the common name. If they don’t match, the client
will not like it when you set require server auth=1.

• You probably don’t want to use the same passphrase for this as you did with the CA.

• ./CA.sh -sign

• It will ask for a PEM pass phrase, that’s the passphrase you set for the private CA you
created.

• This signs the certificate that you just created with the CA you created just moments before.

• The signed certificate is now in the current directory as newcert.pem. If you are going to
create more, you should rename this or it will be overwritten be subsequent signatures.

Now do the following at the prompt:

cat newreq.pem newcert.pem > server.pem (or client.pem as needed)

You now have generated a client and a server certificate in PEM format by repeating the same
process and changing the common name for the client (e.g. gSOAP client). You also need the CA
certificate.

Finally you need to generate Diffie-Helmann parameters for the server. Do the following at the
prompt:

openssl dhparam -outform PEM -out dh.pem 1024

File dh.pem is the output file and 1024 is the number of bits used (this will take a long time, you
can safely use 512).

Of course the developer using your server cert on her machine will find that if require server auth=1

the client will exit before doing the handshake.

142

13.20 Zlib Compressed Messages

To enable deflate and gzip compression with Zlib, install Zlib from http://www.zlib.org if not
already installed on your system. Compile stdsoap2.cpp (and/or stdsoap2.c) with compiler option
-DWITH GZIP and link your code with the Zlib library, e.g. -lz on Unix/Linux platforms.

The gzip compression is orthogonal to all transport encodings such as HTTP, SSL, DIME, and can
be used with other transport layers. You can even save and load compressed XML data to/from
files.

gSOAP supports two compression formats: deflate and gzip. The gzip format is used by default.
The gzip format has several benefits over deflate. Firstly, gSOAP can automatically detect gzip
compressed inbound messages, even without HTTP headers, by checking for the presence of a gzip
header in the message content. Secondly, gzip includes a CRC32 checksum to ensure messages
have been correctly received. Thirdly, gzip compressed content can be decompressed with other
compression software, so you can decompress XML data saved by gSOAP in gzip format.

Gzip compression is enabled by compiling the sources with -DWITH GZIP. To transmit gzip com-
pressed SOAP/XML data, set the output mode flags to SOAP ENC ZLIB. For example:

soap init(&soap);
...
soap set omode(&soap, SOAP ENC ZLIB); // enable Zlib’s gzip
if (soap call ns myMethod(&soap, . . .))
...
soap clr omode(&soap, SOAP ENC ZLIB); // disable Zlib’s gzip
...

This will send a compressed SOAP/XML request to a service, privided that Zlib is installed and
linked with the application and the -DWITH GZIP option was used to compile the sources. Re-
ceiving compressed SOAP/XML over HTTP either in gzip or deflate formats is automatic. The
SOAP ENC ZLIB flag does not have to be set at the server side to accept compressed messages. Read-
ing and receiving gzip compressed SOAP/XML without HTTP headers (e.g. with other transport
protocols) is also automatic.

To control the level of compression for outbound messages, you can set the soap.z level to a value
between 1 and 9, where 1 is the best speed and 9 is the best compression (default is 6). For example

soap init(&soap);
...
soap set omode(&soap, SOAP ENC ZLIB);
soap.z level = 9; // best compression
...

To verify and monitor compression rates, you can use the values soap.z ratio in and soap.z ratio out.
These two float values lie between 0.0 and 1.0 and express the ratio of the compressed message
length over uncompressed message length.

soap call ns myMethod(&soap, . . .);
...
printf(”Compression ratio: %f%% (in) %f%% (out)\n”, 100*soap.z ratio out, 100*soap.z ratio in);
...

143

Note: lower ratios mean higher compression rates.

Compressed transfers require buffering the entire output message to determine HTTP message
length. This means that the SOAP IO STORE flag is automatically set when the SOAP ENC ZLIB flag
is set to send compressed messages. The use of HTTP chunking significantly reduces memory usage
and may speed up the transmission of compressed SOAP/XML messages. This is accomplished by
setting the SOAP IO CHUNK flag with SOAP ENC ZLIB for the output mode. However, some Web
servers do not accept HTTP chunked request messages (even when they return HTTP chunked
messages!). Stand-alone gSOAP services always accept chunked request messages.

To restrict the compression to the deflate format only, compile the sources with -DWITH ZLIB. This
limits compression and decompression to the deflate format. Only plain and deflated messages
can be exchanged, gzip is not supported with this option. Receiving gzip compressed content is
automatic, even in the absence of HTTP headers. Receiving deflate compressed content is not
automatic in the absence of HTTP headers and requires the flag SOAP ENC ZLIB to be set for the
input mode to decompress deflated data.

13.21 Client-Side Cookie Support

Client-side cookie support is optional. To enable cookie support, compile all sources with option
-DWITH COOKIES, for example:

g++ -DWITH COOKIES -o myclient stdsoap2.cpp soapC.cpp soapClient.cpp

or add the following line to stdsoap.h:

#define WITH COOKIES

Client-side cookie support is fully automatic. So just (re)compile stdsoap2.cpp with -DWITH COOKIES

to enable cookie-based session control in your client.

A database of cookies is kept and returned to the appropriate servers. Cookies are not automat-
ically saved to a file by a client. An example cookie file manager is included as an extras in the
distribution. You should explicitly remove all cookies before terminating a gSOAP environment by
calling soap free cookies(soap) or by calling soap done(soap).

To avoid ”cookie storms” caused by malicious servers that return an unreasonable amount of
cookies, gSOAP clients/servers are restricted to a database size that the user can limit (32 cookies
by default), for example:

struct soap soap;
soap init(&soap);
soap.cookie max = 10;

The cookie database is a linked list pointed to by soap.cookies where each node is declared as:

struct soap cookie
{

char *name;
char *value;
char *domain;

144

char *path;
long expire; /* client-side: local time to expire; server-side: seconds to expire */
unsigned int version;
short secure;
short session; /* server-side */
short env; /* server-side: 1 = got cookie from client */
short modified; /* server-side: 1 = client cookie was modified */
struct soap cookie *next;

};

Since the cookie database is linked to a soap struct, each thread has a local cookie database in a
multi-threaded implementation.

13.22 Server-Side Cookie Support

Server-side cookie support is optional. To enable cookie support, compile all sources with option
-DWITH COOKIES, for example:

g++ -DWITH COOKIES -o myserver ...

gSOAP provides the following cookie API for server-side cookie session control:

145

Function
struct soap cookie *soap set cookie(struct soap *soap, const char *name, const char *value, const
char *domain, const char *path);
Add a cookie to the database with name name and value value. domain and path may be NULL to
use the current domain and path given by soap cookie domain and soap cookie path. If successful,
returns pointer to a cookie node in the linked list, or NULL otherwise.
struct soap cookie *soap cookie(struct soap *soap, const char *name, const char *domain, const
char *path);
Find a cookie in the database with name name and value value. domain and path may be NULL to
use the current domain and path given by soap cookie domain and soap cookie path. If successful,
returns pointer to a cookie node in the linked list, or NULL otherwise.
char *soap cookie value(struct soap *soap, const char *name, const char *domain, const char *path);
Get value of a cookie in the database with name name. domain and path may be NULL to use the
current domain and path given by soap cookie domain and soap cookie path. If successful, returns
the string pointer to the value, or NULL otherwise.
long soap cookie expire(struct soap *soap, const char *name, const char *domain, const char *path);
Get expiration value of the cookie in the database with name name (in seconds). domain and path
may be NULL to use the current domain and path given by soap cookie domain and soap cookie path.
Returns the expiration value, or -1 if cookie does not exist.
int soap set cookie expire(struct soap *soap, const char *name, long expire, const char *domain,
const char *path);
Set expiration value expire of the cookie in the database with name name (in seconds). domain
and path may be NULL to use the current domain and path given by soap cookie domain and
soap cookie path. If successful, returns SOAP OK, or SOAP EOF otherwise.
int soap set cookie session(struct soap *soap, const char *name, const char *domain, const char
*path);
Set cookie in the database with name name to be a session cookie. This means that the cookie will be
returned to the client. (Only cookies that are modified are returned to the client). domain and path
may be NULL to use the current domain and path given by soap cookie domain and soap cookie path.
If successful, returns SOAP OK, or SOAP EOF otherwise.
int soap clr cookie session(struct soap *soap, const char *name, const char *domain, const char
*path);
Clear cookie in the database with name name to be a session cookie. domain and path may be NULL
to use the current domain and path given by soap cookie domain and soap cookie path. If successful,
returns SOAP OK, or SOAP EOF otherwise.
void soap clr cookie(struct soap *soap, const char *name, const char *domain, const char *path);
Remove cookie from the database with name name. domain and path may be NULL to use the
current domain and path given by soap cookie domain and soap cookie path.
int soap getenv cookies(struct soap *soap);
Initializes cookie database by reading the ’HTTP COOKIE’ environment variable. This provides a
means for a CGI application to read cookies send by a client. If successful, returns SOAP OK, or
SOAP EOF otherwise.
void soap free cookies(struct soap *soap);
Release cookie database.

The following global variables are used to define the current domain and path:

Attribute value
const char *cookie domain MUST be set to the domain (host) of the service
const char *cookie path MAY be set to the default path to the service
int cookie max maximum cookie database size (default=32)

146

The cookie path value is used to filter cookies intended for this service according to the path prefix
rules outlined in RFC2109.

The following example server adopts cookies for session control:

int main()
{

struct soap soap;
int m, s;
soap init(&soap);
soap.cookie domain = ”...”;
soap.cookie path = ”/”; // the path which is used to filter/set cookies with this destination
if (argc < 2)
{

soap getenv cookies(&soap); // CGI app: grab cookies from ’HTTP COOKIE’ env var
soap serve(&soap);

}
else
{

m = soap bind(&soap, NULL, atoi(argv[1]), 100);
if (m < 0)

exit(1);
for (int i = 1; ; i++)
{

s = soap accept(&soap);
if (s < 0)

exit(1);
soap serve(&soap);
soap end(&soap); // clean up
soap free cookies(&soap); // remove all old cookies from database so no interference occurs

with the arrival of new cookies
}
}
return 0;

}
int ck demo(struct soap *soap, ...)
{

int n;
const char *s;
s = soap cookie value(soap, ”demo”, NULL, NULL); // cookie returned by client?
if (!s)

s = ”init-value”; // no: set initial cookie value
else

... // modify ’s’ to reflect session control
soap set cookie(soap, ”demo”, s, NULL, NULL);
soap set cookie expire(soap, ”demo”, 5, NULL, NULL); // cookie may expire at client-side in 5

seconds
return SOAP OK;
}

147

13.23 Connecting Clients Through Proxy Servers

When a client needs to connect to a Web Service through a proxy server, set the soap.proxy host

string and soap.proxy port integer attributes of the current soap runtime environment to the proxy’s
host name and port, respectively. For example:

struct soap soap;
soap init(&soap);
soap.proxy host = ”proxyhostname”;
soap.proxy port = 8080;
if (soap call ns method(&soap, ”http://host:port/path”, ”action”, ...))

soap print fault(&soap, stderr);
else

...

The attributes soap.proxy host and soap.proxy port keep their values throug the remove method calls,
so they only need to be set once.

13.24 FastCGI Support

To enable FastCGI support, install FastCGI and compile with option -DWITH FASTCGI or add

#define WITH FASTCGI

to stdsoap2.h.

13.25 How to Create Separate Client/Server DLLs

13.25.1 Create Base stdsoap2.dll

The first step is to create stdsoap2.dll which consists of the file stdsoap2.cpp and envC.cpp. This DLL
contains all common functions needed for all other clients and servers based on gSOAP. envC.cpp is
a generated file from an empty input file to the soapcpp2:

Create an empty header file empty.h
(If necessary, add appropriate SOAP Header definitions used by all clients and services)
soapcpp2 -penv empty.h
Compile envC.cpp and stdsoap2.cpp into stdsoap2.dll using the compiler option -DWITH NONAMESPACES

This file contains all the envelope functions required, so that stdsoap2.dll includes the appropriate
function definitions.

While compiling this project, use the Pre-Processor definition: SOAP FMAC1= declspec(dllexport), or
set the macro as an option -DSOAP FMAC1= declspec(dllexport), or compile with -DWITH SOAPDEFS H

and put the macro definitions in soapdefs.h. This exports all functions which are preceded by the
macro SOAP FMAC1 in the source files.

148

13.25.2 Creating Client and Service DLLs

Client side DLL serves as the common code which all clients will use to access the server. This
DLL consists of the files soapC.cpp and soapClient.cpp and other wrapper files, which if needed, to
abstract the gSOAP details from the clients. (These wrapper methods are then exported. If we
dont want to write the wrapper methods, we can directly export the functions in soapClient.cpp

with using the Pre-Processor definition: SOAP FMAC1= declspec(dllexport). Compile the DLL with
option -DWITH NOGLOBAL. This DLL links to stdsoap2.dll.

Clients MUST explicitly set the namespaces value of the gSOAP environment:

soap init(&soap);
soap.namespaces = namespaces;

where the namespaces[] table is defined (static) in the client source.

A service side DLL is similar. This DLL consists of the files soapC.cpp and soapServer.cpp. Use
the Pre-Processor definition: SOAP FMAC1= declspec(dllexport). Compile the DLL with option -

DWITH NOGLOBAL. This DLL links to stdsoap2.dll. Also the namespaces table MUST be explicitly
set in the service code.

13.25.3 gSOAP Plug-ins

The gSOAP plug-in feature enables a convenient extension mechanism of gSOAP capabilities.
When the plug-in registers with gSOAP, it has full access to the run-time settings and the gSOAP
function callbacks. Upon registry, the plug-in’s local data is associated with the gSOAP run-time.
By overriding gSOAP’s function callbacks with the plug-in’s function callbacks, the plug-in can
extend gSOAP’s capabilities. The local plug-in data can be accessed through a lookup function,
usually invoked within a callback function to access the plug-in data. The registry and lookup
functions are:

int soap register plugin arg(struct soap *soap, int (*fcreate)(struct soap *soap, struct soap plugin
*p, void *arg), void *arg)
void* soap lookup plugin(struct soap*, const char*);

Other functions that deal with plug-ins are:

int soap copy(struct soap *soap);
void soap done(struct soap *soap);

The soap copy function returns a new dynamically allocated gSOAP environment that is a copy of
another, such that no data is shared between the copy and the original environment. The soap copy

function invokes the plug-in copy callbacks to copy the plug-ins’ local data. The soap copy function
returns a gSOAP error code or SOAP OK. The soap done function de-registers all plugin-ins, so this
function should be called to cleanly terminate a gSOAP run-time environment.

An example will be used to illustrate these functions. This example overrides the send and receive
callbacks to copy all messages that are sent and received to the terminal (stderr).

First, we write a header file plugin.h to define the local plug-in data structure(s) and we define a
global name to identify the plug-in:

149

#include ”stdsoap2.h”
#define PLUGIN ID ”PLUGIN-1.0” // some name to identify plugin
struct plugin data // local plugin data
{

int (*fsend)(struct soap*, const char*, size t); // to save and use send callback
size t (*frecv)(struct soap*, char*, size t); // to save and use recv callback

};
int plugin(struct soap *soap, struct soap plugin *plugin, void *arg);

Then, we write the plugin registry function and the callbacks:

#include ”plugin.h”
static const char plugin id[] = PLUGIN ID; // the plugin id
static int plugin init(struct soap *soap, struct plugin data *data);
static int plugin copy(struct soap *soap, struct soap plugin *dst, struct soap plugin *src);
static void plugin delete(struct soap *soap, struct soap plugin *p);
static int plugin send(struct soap *soap, const char *buf, size t len);
static size t plugin recv(struct soap *soap, char *buf, size t len);
// the registry function:
int plugin(struct soap *soap, struct soap plugin *p, void *arg)
{

p-¿id = plugin id;
p-¿data = (void*)malloc(sizeof(struct plugin data));
p-¿fcopy = plugin copy;
p-¿fdelete = plugin delete;
if (p-¿data)

if (plugin init(soap, (struct plugin data*)p-¿data))
{

free(p-¿data); // error: could not init
return SOAP EOM; // return error
}

return SOAP OK;
}
static int plugin init(struct soap *soap, struct plugin data *data)
{

data-¿fsend = soap-¿fsend; // save old recv callback
data-¿frecv = soap-¿frecv; // save old send callback
soap-¿fsend = plugin send; // replace send callback with new
soap-¿frecv = plugin recv; // replace recv callback with new
return SOAP OK;
}
// copy plugin data, called by soap copy() // This is important: we need a deep copy to avoid data
sharing by two run-time environments
static int plugin copy(struct soap *soap, struct soap plugin *dst, struct soap plugin *src)
{ *dst = *src;
}
// plugin deletion, called by soap done()
static void plugin delete(struct soap *soap, struct soap plugin *p)
{ free(p-¿data); // free allocated plugin data
}
// the new send callback
static int plugin send(struct soap *soap, const char *buf, size t len)
{

150

struct plugin data *data = (struct plugin data*)soap lookup plugin(soap, plugin id); // fetch
plugin’s local data

fwrite(buf, len, 1, stderr); // write message to stderr
return data-¿fsend(soap, buf, len); // pass data on to old send callback
}
// the new receive callback
static size t plugin recv(struct soap *soap, char *buf, size t len)
{

struct plugin data *data = (struct plugin data*)soap lookup plugin(soap, plugin id); // fetch
plugin’s local data

size t res = data-¿frecv(soap, buf, len); // get data from old recv callback
fwrite(buf, res, 1, stderr);
return res;

}

The fcopy and fdelete callbacks of struct soap plugin MUST be set to register the plugin. It is the
responsibility of the plug-in to handle registry (init), copy, and deletion of the plug-in data and
callbacks.

The example plug-in should be used as follows:

struct soap soap;
soap init(&soap);
soap register plugin(&soap, plugin);
...
soap done(&soap);

Note: soap register plugin(...) is an alias for soap register plugin arg(..., NULL). That is, it passes NULL
as an argument to plug-in’s registry callback.

151

