Java OGSl Hosting Environment Design — A Portable
Grid Service Container Framework

Thomas Sandholm, Steve Tuecke, Jarek Gawor, Rob Seed
gandhol m@mcs.anl.gov} fuecke@mcs.anl.gov} pawor@mcs.anl.gov} feed@mcs.anl.gov|
Argonne National Laboratory, IL

Tom Maguire, John Rofrano, Scott Sylvester, Mike Williams
Emaguire@us.ibm.com| fofrano@us.ibm.com) ylvests@us.ibm.com) mdw@us.ibm.com|
IBM Poughkeepsie, NY

Abstract
The Open Grid Service Infrastructure (OGSI) specification defines a set of WSDL
interfaces to be implemented by various hosting environments. In this document we
define one such hosting environment written in Java. We focus on defining the server-
side programming model in order to alow Grid services written in one environment to be
easily deployed in others. In addition to facilitating service implementation portability,
we also define a container framework that is responsible for implementing the low-level
infrastructure of OGS, so that service providers can focus on the application logic. A key
design point of the framework isits flexibility to allow for custom dispatchersto be
written for awide range of back-end hosting environments, such as EJB containers,
Servlet containers, and CORBA servers. We define a set of interfaces and classes that
must be supported to comply with the container framework, and we provide two use
cases of applications of this framework; alightweight Javaimplementation, and a more
enterprise-oriented EJB Entity Bean implementation of a Grid service.

mailto:sandholm@mcs.anl.gov
mailto:tuecke@mcs.anl.gov
mailto:gawor@mcs.anl.gov
mailto:seed@mcs.anl.gov
mailto:tmaguire@us.ibm.com
mailto:rofrano@us.ibm.com
mailto:sylvests@us.ibm.com
mailto:mdw@us.ibm.com

Contents

T e 3
P REAED SPECHTICAIONS.cuvieieeiieeetiieieieieeetiieetieeeteeeeteeeeseeeseseeeeeseeesaseeessseeesssesessseeeas 3
GRS 0] = PP PPPPRPPN 3

J_%l (e I 4
GId SErvice POrt TYPES a5 JAVA INEEITACES.ooooowoioorormsoreoressesseisessessessesersoees 4

6 Implementing Port Type INtErfaces..........ccuovuveeeeeieiiiiecieeeeeeeeeeeeeeee e 4
7 ReQIStEriNg SErVICE INSLANCES........c.veeeeeeeeeetiie ettt eeeeeeeeeeeteeeeereeeeebeeeereeeas 6
[B External Sate ManageMENt...........coueveveueeeerieeteieieteeeeteeeeteeteteeeereeetereeneteeenereenesenes 6
[B OGSl Container Interfaces and ClasseS............ccovvuereeeereeverereeiereeeeieeeieeeiereeerereenenens 6
1 SEIVICEOKE BION ..o 6

D.2 PersiStentServiCeSKE 60Nooiviiiiiiceee e 7|
0.3 Delegation SKeletons. ... 7
0.4 FaCtoryServiCESKE BLON...........ccueeieieieeeiieee ettt eee e 8

S e e (A o 8

6 SEIVICEPTOPEITIES. . ooooooooooosooooooesoesoeooeooneoesoooeeoessesseesomsoesseseeseeesnsensenssnoenn 8

0.7 CONtAINENREGISITY ...ttt e et e et e ereesreeenreeereeenees 9
0.8 ContalNErREGISIIYLISIENEYcccuvveeeeeeeeeeeeeeeeee ettt e ebee e 9
0.9 SerVICEDAACONIAINESccveeeueeeeeeeeeeeteeetie ettt ete e eeeeeeteeereeeereesseeenreeeseeenees 9
D.10 SErVICEDAALISIENEYccveeiieiiiiecie ettt e e sreeenre e 10
0 Use Case: Light-weight Java Grid service Implementation................................. 10
0.1 Java Subclass Implementation of Counter Grid SerVice.............cooeeeevseenen.. 10
10.1.1 Tool Generated Code ... 11
10.1.2 CounterFactorylmpl.javaSource Code.........oooiiiiiiii 11
10.1.3 Counterlmpl.java SoUurce COOE.........c.eovereirieiieiiieieieeeeeses e 12

0.2 JavaDelegation Implementation of Counter Grid service............uuuuuen........ 12
10.2.1 To0ol Generated COUEccveeieeieiieceeeeeeeceeeee et 12
10.2.2 CounterFactorylmpl.java Source COode..........ocecveeeceeeeceeeeirieeereeeenveennn 13
10.2.3 CounterSkeleton.javaSource Code......ooooiiiiii i 13

n1 Use Case: Custom EJB DiSPatCherccccueeveveueeeerieieieieieeeeeeseeeeeeee e 14
(1.1 Grid Service @S an ENItYBEANoooveeeveeeeeeeeeeeeeeeeeeeeseeeesreeserenaesennsenens 14
11.1.1 Tool Generated COUEooiviiiiiiiiiiecececeeee e 16
11.1.2 CounterFactoryEjblmpl.javaSource Code ... 16
11.1.3 CounterEjbSkeleton.java Source Code..........ccuovueecvecveecieiieeciecieerenn, 18

12 R e e =T T 19
ADPPENIX A OPEN ISSUES.....ceeeeiiieiiiiieeeeeeeieeesssssssssneeeetessssssmmmsseeeeeeesssmmmmsseseeeseessssmmnesees 20

1 Introduction

The purpose of this document istwofold; 1) to share the experience gained from
developing a hosting environment for Open Grid Service Infrastructure (OGSI) based
servicesin Javal]; and 2) to provide a set of interfaces that can be used to define the
interaction between a Grid service implementation, and its container implementing the
OGS required behavior [2][3]. We hope that this effort will lead to an exchange of ideas
among different OGSI implementations, such as[1], and [4], in order to achieve Grid
service implementation portability in Java. Hence, we focus on the service-provider
programming model, and the responsibilities of an OGSI container implementation. The
OGS container could be seen as a request dispatcher between the marshalling engine and
the service implementations. The service implementations could be either OGS
container provided implementations of interfaces defined in the Grid Service
specification [3], or implementations of service provider defined interfaces. Since the
OGS container is envisaged to integrate a wide range of heterogeneous service
implementations, it was designed to support customization of the request flow. First we
describe the relationship to other specifications, and in what areas this document extends
theses specifications. Then we discuss the proposed server-side programming model, and
present the OGSI container interfaces and classes in some more detail. Finaly, we
provide two use cases of applications of the framework. The first use case exemplifies
how to develop a Grid service in alightweight Java environment, whereas the second use
case shows an enterprise Javaimplementation of a Grid service using the framework.

2 Related Specifications

Neither the WSDL [5] nor the SOAP [6] specification defines how to process requests on
the server-side. Thiswas left out in order to alow for implementations in many different
hosting environments using various programming models to be utilized. Since both of
these specifications are widely applied in today’s Web services implementations and
specifications, they will however indirectly have an impact on the server-side
programming model defined here. JAX-RPC [7] defines a server-side programming
model in a Servlet container [8]. It is based on a statel ess object-pooling based lifecycle
model, which does not map very well onto the soft state model of a Grid service. JAX-
RPC, however, defines XML Schema[9] and WSDL to Java mappings, which we adopt
in our framework. The Web Services for J2EE specification [10] extends the JAX-RPC
server side-programming model to facilitate Web service implementation hosting in EJB
[11] containers as stateless Session Beans. From a service provider’s point of view it
therefore does not provide any new interfaces or APIs apart from those aready defined in
the EJB specification. When integrating EJBs into our framework we take avery similar
approach. The main difference in our approach isthat we alow stateful Session Beans, as
well as Entity Beansto be exposed as Grid services.

3 Scope

We are not defining the client-side programming model in this document, although it is
equally important to assure portability among OGSI clients. However, JAX-RPC aready
defines arich client-side programming model that can be used to communicate with Grid

services as well. In the future, though, we expect there to be extensions to JAX-RPC in
order to make it easier for clientsto use OGSI compliant Grid services. We want Grid
services to be deployed in awide range of operating environments, and hence do not
define or mandate any deployment, packaging, or configuration in this document. The
implementations of an OGS hosting environment are expected to leverage the features of
their respective target environment (e.g the J2EE Servlet or EJB models) in this area.
Further, the security model is deferred to other documents. The notification model
(JAXM [12], IMS[13], Message Driven Beans [11]) will also be dealt with elsewhere.

4 Goal

In the currently available set of specifications thereisagap in terms of expected behavior
between receiving a Web service request over for instance SOAP, and dispatching it into
a stateful service instance in a scalable manner. Our hope isto came up with a portable
dispatching framework that can be used both to write reusable Java Grid services, as well
as plugging in dispatchers to other component models hosting for instance EJB, or
CORBA objects[14]. The dispatcher framework will furthermore implement the OGS
behavior defined in [3] and allowing it to be fully transparent to the service provider’s
implementation. In some cases, the service implementation or the custom dispatchers
may, however, want to explicitly interact with their container, for instance when
managing Service Data Elements (SDEs).

Note that even though JAX-RPC defines mappings between WSDL, and XML Schema
constructs; and Javainterfaces, and types, our dispatcher framework does not make any
assumptions about how the XML types are deserialized into Javatypes; thisis up to the
seriadization (JAX-RPC) engine implementation being used.

This framework isintended to be compatible both with Java 2 Standard Edition (J2SE)
[15] aswell as Java 2 Enterprise Edition (J2EE) [13]. Future versions of this document
may also address Java 2 Micro Edition (J2ME) [16].

5 Grid Service Port Types as Java Interfaces

The most fundamental prerequisite for portability among Grid service implementationsis
that they al implement the same core interfaces. By core interfaces we refer to the
WSDL interfaces defined in the Grid service specification [2]. We are therefore taking
the approach of leveraging the WSDL to Java mappings defined in JAX-RPC. JAX-RPC
refersto these interfaces as Service Endpoint Interfaces. Grid services exposing any of
the Port Types defined in [3] must implement their respective Service Endpoint Interfaces
to be compliant with our framework.

6 Implementing Port Type Interfaces

Our design goal has been to allow implementations of the core OGSI interfaces to be
provided on behalf of service implementers. Implementations of this design could hence
be seen as hosting environments for Grid services. Further, the framework should allow
service providersto easily add in implementations of new Port Types through
configuration or tool driven code generation. The overall design of the basic components

of the OGSI container architectureis depicted in Figure 1. The Ser vi ceSkel et on
classisthe base class for al Grid services and can hence be compared to a CORBA or
Java Object. Asthe base for al Grid services, this class naturally implements the

Gi dServi cePort Type interface. It also containsaSer vi ceDat aCont ai ner
allowing instance state and meta data to be published and queried. A

Fact or ySer vi ceSkel et on gives service implementers an easy way to implement
OGSI compliant factories. All optional core OGSI Port Types are provided as

Del egat i onSkel et ons meaning that they can be contained by and delegated to by a
Ser vi ceSkel et on instance.

«interface»
ContainerRegistryListener

7N
|
«interface» «interface» «interface»
ContainerRegistry ServiceProperties GridServicePortType
«interface» ServiceSkeleton «interface» «interface»
ServiceActivator|- — — — 9 ‘_ServiceDataCmtainer — _> ServiceDataListener
+preDestroy()

T, % !

PersistentServiceSkeleton| [ServiceDataElement

T

FactoryServiceSkeleton FactoryDelegationSkeleton

-

+createServiceObject()

«interface»
FactoryPortType

Figurel: UML Class Diagram of OGS| Container Architecture

So, implementing a service using this container framework typically involves providing a
service implementation that inherits from the Ser vi ceSkel et on class and delegates
to any number of optional, either core or user defined Port Type implementations.
Optionally the service implementer may want to provide a Grid service factory by
extending the Fact or ySer vi ceSkel et on classin order to allow dynamic creation
of stateful Ser vi ceSkel et on instancesfor its service. If no factory existsfor a
serviceit is said to be a persistent service, and must then be made available by the
container during initialization, or by using alazy-loading scheme. Persistent services

should extend the Per si st ent Ser vi ceSkel et on class, which is an extension of
Servi ceSkel et on.

7 Registering Service Instances

In order to allow the container to look up contained services when requests are to be
dispatched to them, they have to be registered with the container. The

Cont ai ner Regi st ry maps anincoming WSDL service endpoint to the service
instance using the service path part of the endpoint. Thus, when registering a service, the
path has to be conveyed to the container along with aSer vi ceSkel et on or

Ser vi ceAct i vat or instance. By registering aSer vi ceAct i vat or instance,

Ser vi ceSkel et onscan be loaded into memory first when being used. In order to
passivate stale instances to optimize memory usage, a JAX-RPC Handler can be used that
for instance passivates instances on a Least Recently Used (LRU) basis. Either a

Ser vi ceSkel et on oraServi ceAct i vat or hasto beregistered for aservice
endpoint in order for the container to dispatch the request successfully. If a

Ser vi ceSkel et on instanceisfound in the registry it will pass the incoming request
directly to the instance. If however aSer vi ceAct i vat or instanceis encountered, the
activator isfirst given a chance to activate the instance before the requested operation is
invoked. The activation hooks combined with the factory pattern of OGSI allow you to
write custom dispatchers delegating to remote hosting environments with their own
lifecycle management.

8 External Sate Management

A Grid service exposes its remotely introspectabl e state trough Service Data Elements
(SDEs). The Grid service specification defines what SDEs the core PortTypes must
expose, but service implementers should also be able to add their own information to the
set of SDEs contained by aSer vi ceSkel et on. Since this SDE container should be
seen asalogica set of XML instances complying to awell defined XML Schema model,
we want to allow many different implementations of this container, some of which may
be provided by the OGSI container and dispatcher framework provider transparently to
the application. But we also want to alow custom SDE containers to be written that are
hosted outside of the OGSI. This can be achieved by providing an implementatin of the
Ser vi ceDat aCont ai ner interface, and then associating it with a

Ser vi ceSkel et on instance.

9 OGSI Container Interfaces and Classes

In this section we describe a set of Javainterfaces and classes that define the interaction
between an implementation of the OGSI container, and the service implementations and
custom dispatchers.

9.1 ServiceSkeleton

package org. gri df orum ogsi . provi der;

i mport org.gridforumogsi.GidServi ceExcepti on;

i mport org.gridforum ogsi.servicedata. Servi ceDat aCont ai ner;
i mport javax.xm .rpc. handl er. MessageCont ext ;

public abstract class ServiceSkel et on
i npl ements Gri dServi cePort Type, ServiceProperties {
publ i ¢ Servi ceDat aCont ai ner get Ser vi ceDat aCont ai ner () ;
public void set Servi ceDat aCont ai ner (Ser vi ceDat aCont ai ner cont ai ner) ;
public void post Creat e(MessageCont ext context) throws GidServi ceExcepti on;
public void postActivate(MessageContext context) throws G i dServi ceExcepti on;
public void prePassivate() throws Gi dServi ceExcepti on;
public void preDestroy() throws GidServi ceExcepti on;

}

The Ser vi ceSkel et on isthe base classfor all Grid services. It provides an
implementation of the Gri dSer vi cePort Type (Service Endpoint Interface)
generated from the OGSI WSDL Port Type. Further it provides getters and settersto plug
in customized implementations of a Ser vi ceDat aCont ai ner . It is however
expected that the OGSI container provides adefault Ser vi ceDat aCont ai ner
implementation. All of its non-abstract subclasses must have a default constructor, in
order to alow the framework to create instances on demand. In the simplest scenario
Grid service providers can let their implementation inherit from the

Ser vi ceSkel et on directly, but in many cases the extended service skeleton would be
agenerated dispatcher delegating out to the actual service implementation and optional
implementations of the OGSI WSDL Port Types. The postCreate, postActivate, and
postPassivate methods can be used to bootstrap, and swap out state information like
service data. The creation and activation callbacks are triggered by an incoming request
message and these operation take the JAX-RPC defined MessageCont ext that
triggered its invocation as input.

9.2 PersistentServiceSkeleton

package org. gri df orum ogsi . provi der;

i mport org.gridforum ogsi.GidServi ceExcepti on;
i mport javax.xm . rpc. handl er. MessageCont ext ;

publ i c abstract class Persi stentServiceSkel et on
extends Gi dServiceSkel eton {
public voi d postPeri stentCreat e(MessageCont ext cont ext)
throws Gi dServi ceExcepti on;
public void postPersitentActivate(MessageCont ext context)
throws Gi dServi ceExcepti on;
public void prePersistentPassivate() throws Gi dServi ceExcepti on;
public void prePersistentDestroy() throws G i dServi ceExcepti on;

}
All Grid services that are not to be created by factories should inherit from the

Per si st ent Ser vi ceSkel et on class, and thus indicating to the OGSI container
that it has to make these services available when requests targeting them are encountered.

9.3 Delegation Skeletons
package org. gri df orum ogsi . provi der;

public class <Por Type>Del egati onSkel et on
i mpl ements <Port Type>Port Type {
}

Delegation skeletons should be provided for all OGSI WSDL Port Types except the

G i dServi cePort Type, whichisimplemented in the Ser vi ceSkel et on class.
The Ser vi ceSkel et on will delegate the requests to these skeletons, which implement
the respective Service Endpoint Interfaces for their Port Types. These Port Type
implementations can be seen as the default implementations provided by the OGS
container. Service providers may however override these implementations.

9.4 FactoryServiceSkeleton

package org. gri df orum ogsi . provi der;
i mport org.gridforum ogsi.GidServi ceExcepti on;

public abstract class FactoryServi ceSkel et on
ext ends Persi stent Servi ceSkel eton, inplenments FactoryPort Type {
publ i c Servi ceSkel et on createServi ceObj ect (Obj ect input)
throws GridServi ceExcepti on;
}

This classis a convenience class for implementing factories. It allows the OGSI container
to provide most of the underlying implementation of the factory on behalf of the service
provider. The only method the service provider has to implement is createServiceObject
returning aSer vi ceSkel et on that implements the service provider PortType(s).

9.5 ServiceActivator

package org. gri df orum ogsi . provi der;
i mport org.gridforum ogsi.GidServi ceExcepti on;
i mport javax.xm . rpc. handl er. MessageCont ext ;

public interface ServiceActivator {
public ServiceSkel eton acti vat e(MessageCont ext cont ext)
throws GridServi ceExcepti on;
publ i ¢ Persi stent Servi ceSkel et on acti vat ePer si st ent (
MessageCont ext context) throws GridServi ceExcepti on;
}

The OGSI container will invoke the Ser vi ceAct i vat or if aserviceisregistered but
not active yet (i.e. no Ser vi ceSkel et on instance exists). A service activator is
expected to be able to recover the state of aSer vi ceSkel et on instance, in order to
make server lifecycles transparent to clients. The activator would commonly also work in
conjunction with a passivator that could be implemented using the JAX-RPC Handler
framework to provide a LRU cache of skeletons.

9.6 ServiceProperties

package org. gri df orum ogsi . provi der;

public interface ServiceProperties {
public Object getProperty(String key);
public void setProperty(String key, Object property);
}
Thisinterface is used to set and get properties on service instances, and thus represents

the local state of the instance. Thisinterface is mainly intended to be used to

communicate internal state between delegation skeletons, and thus promoting their
decoupling.

9.7 ContainerRegistry

package org.gridf orum ogsi.registry;

i mport org.gridforum ogsi.provider. ServiceSkel et on;
i mport org.gridforum ogsi.provider. ServiceActivator;
i mport org.gridforum ogsi.GidServi ceExcepti on;

public interface ContainerRegistry {
public void registerService(ServiceSkel eton servi ce,
String servicePath) throws G idServiceException;
public void registerActivator(ServiceActivator activator,
String activatorPath) throws GidServi ceExcepti on;
public void unregisterActivator(String activator Pat h)
throws Gi dServi ceExcepti on;
public ServiceSkel eton unregisterService(String servicePat h)
throws G i dServi ceExcepti on;
public void passivateService(String servicePath) throws Gi dServi ceExcepti on;
publ i c Servi ceSkel et on | ookup(String servi cePat h)
throws Gi dServi ceExcepti on;
public Col |l ection getServices(String servicePat h)
throws Gi dServi ceExcepti on;
public void addLi stener(String servicePath,
Cont ai ner Regi stryLi stener |istener) throws Gi dServi ceExcepti on;
public void renoveli stener(String servicePat h,
Cont ai ner Regi stryLi stener listener) throws Gi dServi ceExcepti on;

The Cont ai ner Regi st ry isalocal registry of services currently registered in the
container. The OGSI container cannot dispatch the request if the service is not registered
in this container. A lookup of a service may result in activation if the service has been
associated with an activator. The services are ordered in a hierarchical structure
determined by the servicePath. An activator registered at a certain path will be able to
activate al services below itself in the hierarchy. Factories are expected to register the
services they created in sub trees as well, thus allowing per factory activatorsto be
registered.

9.8 ContainerRegistryListener
package org.gridf orum ogsi.registry;

public interface ContainerRegistryListener {
public void registryChanged(String registryPath);
}

If aregistry entry changes under the given path a notification is sent out to all registered
listeners on that path.

9.9 ServiceDataContainer

package org. gridf orum ogsi . servi cedat a;
public interface ServiceDataCont ai ner {
publ i c Servi ceDat aEl ement createServi ceData()throws G i dServiceExcepti on;
public void addServi ceDat a(Servi ceDat aEl enent dat a)
throws Gi dServi ceExcepti on;
public Object findServiceData(Object queryExpression)

throws Gi dServi ceExcepti on;
publ i ¢ Servi ceDat aEl enent get Servi ceData(String nane)
throws Gi dServi ceExcepti on;
publ i ¢ Servi ceDat aEl enent renoveServi ceData(String nane)
throws Gi dServi ceExcepti on;
public void addLi stener(String namne,
Servi ceDat aLi stener |istener) throws Gi dServi ceExcepti on;
public void renovelLi stener(String nane,
Servi ceDat aLi stener |istener) throws Gi dServi ceExcepti on;

}

A service data container must be associated with al Grid services. It allows Service Data
Elements (SDES) to be created, published, and discovered. The SDESs are generated from
schemas that comply with the XML Schema definition of an SDE in the Grid Service
specification [3] according the mapping defined by JAX-RPC. The GridServiceSkeleton
will call the findServiceData method when a remote findServiceData request is received.

9.10 ServiceDataListener
package org. gridf orum ogsi . servi cedat a;

public interface ServiceDatalistener {
public void servi ceDat aChanged(String servi ceDat aNane) ;

}
If a service data value changes a notification is sent out to al registered listeners on that

name.

10 Use Case: Light-weight Java Grid service
Implementation

In the design shown in Figure 1, there are two implementation approaches that a service
can choose from; including direct sub-classing of the Ser vi ceSkel et on, and

Fact or ySer vi ceSkel et on classes, and delegation. These implementation choices
will alow usto meet the requirements to support a service implementation as both a Java
Object, and an EJB (exemplified in the next section), depending on the specific QoS
required by the service. Even in a Java Object scenario, the delegation model may be
useful if, for instance, an existing application needs to be exposed as a Grid service.

The following examples implement a counter Grid service. The counter Grid serviceisa
very simple stateful service that supports the operations add(), subtract() and getValue().

10.1 Java Subclass Implementation of Counter Grid service
The subclass implementation of the Counter grid service includes a Java implementation

of the counter that is derived from the Ser vi ceSkel et on and a Javaimplementation
of the counter factory that is derived form the Fact or ySer vi ceSkel et on.

10

10.1.1

ServiceSkeleton

FactoryServiceSkeleton

+preDestroy()
+createServiceObject() Zﬁ
Zﬁ : ; Counterimpl «interface»
CounterFactorylmpl | «Instantiate» CounterPortType
______ +add() —[+add()
+createServiceObject() +subtract() +subtract()
+getValue() +getvalue()

Figure2: Subclassimplementation of Counter Grid service

Tool Generated Code

The code generated in the Java subclass implementation consists of the following:

1.

10.1.2

The JAX RPC client proxies and associated Java interfaces. In the above
example, the Count er Por t Type isone of these artifacts, which is also used by
the service implementation. Note, the other client side artifacts are not shown on
this model. The JAX-RPC provider tools typically generate this code.

The factory implementation, which in this example is represented by

Count er Fact oryl npl .

A service implementation shell or skeleton that will need to be augmented with
the applicable businesslogic. Count er | npl represents thisin the above
example.

CounterFactorylmpl.java Source Code

package org. gl obus. ogsa. i npl . sanpl es. count er. basi c;

i mport
i mport
i mport

public

org. gri df orum ogsi . provi der. Fact orySer vi ceSkel et on;
org. gri df orum ogsi . provi der. Servi ceSkel et on;
org. gridf orum ogsi . Gi dServi ceExcepti on;

cl ass Count er Fact oryl npl extends FactoryServi ceSkel eton {

publ i c Servi ceSkel et on createServi ceoj ect (Qbj ect input)

throws GidServi ceException {
return new Counterlnmpl ();

11

10.1.3 Counterlmpl.java Source Code

Note, the code generated by the tooling would include the signature for Counterlmpl,
however would not include the business logic associated with this signature. In this
example, the Grid Service developer would be responsible for the implementation of the
add(), subtract(), and getVaue() methods which will be exposed as operations on the
service.

package org. gl obus. ogsa. i npl . sanpl es. count er. basi c;

i mport org. gl obus. ogsa. sanpl es. Count er Port Type;
i mport org.gridforum ogsi.provider. ServiceSkel et on;
i mport java.rm .Renpt eExcepti on;

public class Counterlnpl extends ServiceSkel eton
i mpl ement s Count er Port Type {

private int val = 0;
public int add(int val) throws RenoteException {
this.val = this.val + val; return this.val;

}

public int subtract(int val) throws RenbteException {
this.val = this.val - val; return this.val;

public int getValue() throws RenoteException {
return this.val;
}

10.2 Java Delegation Implementation of Counter Grid service

In the Java delegation implementation, a service skeleton subclasses
Ser vi ceSkel et on and delegates the requests to the counter implementation.

10.2.1 Tool Generated Code

It is assumed that the Java del egation implementation will be the implementation
approach used by the tooling when exposing, for example, an existing Java class
implementation that cannot be modified, as a Grid service.

The code generated in the Java del egation implementation consists of the following:

* TheJAX RPC client proxies and associated Java interfaces

* Thefactory implementation

» A service skeleton, which will contain and exploit the business |ogic of the Java class
viadelegation. In the above example, thisis represented by Count er Skel et on.

There should be no additional Java code that needs to be written by the service devel oper
using this approach.

12

FactoryServiceSkeleton

+createServiceObject()

[

CounterFactorylmpl

«instantiate»

ServiceSkeleton

+preDestroy()

T

CounterSkeleton

«interface»
CounterPortType

+createServiceObject()

+add()
+subtract()
+getValue()

+add()
+subtract()
+getValue()

!

Counterimpl

+add()
+subtract()
+getValue()

Figure 3: Delegation implementation of Counter Grid service

10.2.2

package org. gl obus. ogsa. i npl . sanpl es. count er. del egati on;

CounterFactorylmpl.java Source Code

i mport org.gridforum ogsi.provider. Fact oryServi ceSkel et on;

i mport org.gridforum ogsi.provider. ServiceSkel et on;

i mport org.gridforum ogsi.GidServi ceExcepti on;

public class CounterFactoryl npl extends FactoryServi ceSkel eton {

public Servi ceSkel eton createServi ce(hj ect (Cbject

throws GidServi ceException {

return new Count er Skel et on(new Counterlnpl ());

10.2.3

package org. gl obus. ogsa. i npl . sanpl es. count er. del egati on;

i mport org.gridforum ogsi.provider. ServiceSkel et on;

CounterSkeleton.java Source Code

i mport org. gl obus. ogsa. sanpl es. Count er Port Type;

i mport java.rm .Renpt eExcepti on;

public class Counter Skel eton extends Servi ceSkel et on

i mpl enents Count er Port Type {

private Counterlnpl inpl;
publ i ¢ Count er Skel et on(Count er | npl

this.impl = inpl;

public int add(int val) throws RenoteException {

impl) {

i mpl)

13

return this.inpl.add(val);

public int subtract(int val) throws RenbteException {
return this.inpl.subtract(val);
}

public int getValue() throws RenoteException {
return this.inpl.getValue();
}

11 Use Case: Custom EJB Dispatcher

J2EE technology provides a component-based approach to the design, development,
assembly, and deployment of enterprise applications. J2EE simplifies enterprise
applications by basing them on standardized, modular components, by providing a
complete set of services to those components, and by handling many details of
application behavior automatically, without complex programming. J2EE has two
containers that isolate applications from underlying platforms. These are the EJB
container and the Web container. Grid service implementations can be rendered in either
container with varying qualities of service. The EJB container manages things like
security, transaction, concurrency, and persistence so that application developers can
focus on business behavior instead of infrastructure behavior. If thislevel of
infrastructure support is not required, grid services can also be implemented as Java
Objects, as exemplified in the previous section. Either way, implementing Grid services
within the J2EE component model leverages this base and all it has to offer software
developers.

Basing grid services on the J2EE model is also important because it reuses afamiliar
programming model instead of introducing a new one. Developers familiar with J2EE
and EJBs can quickly get started creating Grid services.

A full explanation of the EJB model is beyond the scope of this document. The important
concepts being leveraged here are primary classes that comprise an EJB. These are the
Home interface, the Remote interface and the Enterprise bean itself. Figure 4 showsthe
Counter example implemented as an EJB.

11.1 Grid Service as an EntityBean

When the Count er classisimplemented as an EJB, there are actually four classes that
are needed. Thisis because Count er has persistent state and should be implemented as
an Entity Bean. For services without persistent state, or states that doesn’t need to be
preserved between server restarts, Session Beans could be used. The Count er class
signature becomes the remote interface and retains the original name of the class for
clientsto refer to. It only has the methods defined in the public interface of the original
class because it is astub that will delegate back to the actual enterprise bean.

14

Count er Bean isthe persistent enterprise bean class, which contains the value attribute
and the implementations for the accessor methods and business methods. It contains all
the logic from the original class. It also has several methods that are required by the EJB
specification for managing the lifecycle of the bean.

All EJBs are created via afactory. The factory is called the Horrel nt er f ace and is
implemented by the Count er Hone classin this example. Finaly thereisaPr i mar yKey
class, whichisusedinfi ndByPr i mar yKey operations to uniquely identify the entity
EJB. Thisclassisonly generated for Entity beans. The only class that was defined by the
developer was the original Count er class. The four classes that are presented here were
generated by EJB tooling. Thisisthe same strategy used for developing Grid services.

OGSA Grid service developers can develop their business functions just like any other
Java class or EJB. Thetoolsthat will be provided will generate code that leverages this
design and wraps the Home interface, Remote interface, and actual Enterprise bean,
respectively and add the behavior required of a Grid Service. It isimportant to note that if
you develop your service as a Java object and later want to changeit to an EJB
implementation, you must adhere to the J2EE specification and not do anything that
would violate the EJB container contract (e.g., like spawning your own threads or
accessing resources that are not container managed without using the Java Connector
Architecture (JCA)).

«EJBHomelnterface»
CounterHome

«EJBCreateMethod» +create()

«EJBFinderMethod» +findByPrimaryKey() «EJBRemotelnterface»
I Counter
|
N2
«EJBEntity» _- +add()
CounterBean - +subtract()
i +getVal
#context : EnityContext L getValue()
-val : int

«EJBCreateMethod» +ejbCreate()
«EJBCreateMethod» +ejbPostCreate() N

+ejbActivate() AN

+ej_EPa53lvate() S «EJBPrimaryKey»
+ejbLoad() O | CounterBeanPK
+ejbStore() N

+ejbRemove()
+setEntityContext()
+unsetEntityContext()
+add()

+subtract()
+getValue()

Figure4: EJB Counter Components

The technique used to support a Grid service EJB implementation is very similar to the
Java delegation implementation model described in section 10.2. In this case, the service

15

skeleton (Count er Skel et on) in our exampleis what integrates the EJB into the OGS
container framework.

11.1.1 Tool Generated Code

The tooling support for EJBs provides the ability to expose an existing EJB asa Grid
service.

The code generated in the EJB implementation of a Grid service consist of the following:

* The JAX RPC client proxies and associated Java interfaces.

» Thefactory implementation, which in this exampleis represented as
Count er Fact or yEj bl npl .

* A service EJB skeleton, which will contain aremote reference to the service EJB
that is represented as Count er Ej bSkel et on in thisexample.

Exposing an existing EJB will have the same characteristics, as the use of an existing
Javaclass in that no additional code will need to be developed by the service
implementer.

11.1.2 CounterFactoryEjblmpl.java Source Code

package com i bm ogsa.i npl . deno. count er. ej b;

i mport org.gridforum ogsi.provider. Fact oryServi ceSkel et on;
i mport org.gridforum ogsi.provider. ServiceSkel et on;
i mport org.gridforum ogsi.GidServi ceExcepti on;

i mport com i bm ogsa. sanpl e. Count er Hone;
i mport com i bm ogsa. sanpl e. Count er;

i mport javax.nam ng. | nitial Context;

i mport javax. nam ng. Cont ext ;

i mport javax. nam ng. Nam ngExcepti on;

i mport javax. ejb. Creat eExcepti on;

i mport java.rm .Renpt eExcepti on;

i mport java.util.Properties;

i nport javax.rm . Portabl eRenot elbj ect ;

public class Counter FactoryEj bl npl extends FactoryServi ceSkel et on {
publ i c Servi ceSkel eton createServi ceoj ect (Cbject input)
throws GidServi ceException {
Count er Ej bSkel et on aCount er Skel eton = nul | ;
try {
Cont ext jndi Context = new Initial Context();
oj ect ref =
j ndi Cont ext . | ookup("ej b/ cont i bm ogsa/ sanpl e/ Count er Hone") ;
Count er Hone hone =
(Count er Hone) Por t abl eRenpt eCbj ect . narrow(r ef,
Count er Hone. cl ass) ;
Count er anEJBCounter = hone.create();

16

aCount er Skel et on = new Count er Ej bSkel et on(anEJBCount er) ;
} catch (Exception e) {

t hrow new Gri dServi ceExcepti on(e);
}

return aCount er Skel et on;

FactoryServiceSkeleton ServiceSkeleton

+createServiceObject() +preDestroy()

ZP

CounterEjbSkeleton —
. . - «interface»
CounterFactoryEjbimpl| ~ «Instantiate» -impl CounterPortType
———————— 2yradd() +add()

+createServiceObiject() ¥subtract() +subtract()

I +getValue() +getValue()

«instantiate» +preDestroy)
| ¢

|
v/

«EJBHomelnterface»
CounterHome

«EJBCreateMethod» +create()
«EJBFinderMethod» +findByPrimaryKey()
I
«instantiate»
|
I
I

|
A4

«EJBEntity»
CounterBean «EJBRemotelnterface»
Counter

#context : EnityContext
-val:int]

«EJBCreateMethod» +ejbCreate() +add()
«EJBCreateMethod» +ejbPostCreate() +subtract()
+ejbActivate() +getValue()
+ejbPassivate()
+ejbLoad()
+ejbStore()
+ejbRemove()
+setEntityContext()
+unsetEntityContext()
+add()

+subtract()
+getValue()

Figure 5. EJB implementation of Counter Grid service

Count er Fact or yEj bl npl isthe factory implementation of the EJB counter Grid
service. Thisfactory encapsulates the details associated with locating the EJB home

interface, creating the counter bean, and passing the reference to the EJB remote interface
to the service skeleton. Thecr eat eSevi ceCbj ect operation creates the service
skeleton in addition to the actual counter EJB and returns the Count er Ej bSkel et on
with the remote EJB reference.

11.1.3 CounterEjbSkeleton.java Source Code

package com i bm ogsa. i npl . deno. counter. ej b;

i mport org.gridforum ogsi.provider. ServiceSkel et on;
i mport org.gridforumogsi.GidServi ceExcepti on;

i mport org. gl obus. ogsa. sanpl es. Count er Port Type;

i nport com i bm ogsa. sanpl e. Count er;

i mport javax.xm .rpc. handl er. MessageCont ext ;
i mport javax.ejb. RemoveExcepti on;
i mport java.rm .Renpt eExcepti on;

public class CounterE bSkel et on extends Servi ceSkel et on
i mpl enent s Count er Port Type {
private Counter inpl;
publ i ¢ Count er Ej bSkel et on(Counter inpl) {

this.impl = inpl;

public int add(int val) throws RenoteException {
return this.inpl.add(val);
}

public int subtract(int val) throws RenoteException {
return this.inpl.subtract(val);
}

public int getValue() throws RenoteException {
return this.inpl.getValue();

}
public void preDestroy() throws G idServi ceException {

try {
i mpl . renove();
} catch (RenpveException re) {
t hrow new Gri dServi ceException(re);
}

}

Count er Ej bSkel et on contains the remote interface to the Counter Session EJB
(impl) and is responsible for delegating operations to business methods implemented by
the EJB.The pr eDest r oy operation is the callback method that is used to notify this
service skeleton that the service will be destroyed. In this case, the Counter EJB is
removed. Note that the framework will call pr eDest r oy when clients explicitly
destroy the Grid service, as well as when the soft-state timeout of the Grid service
expires.

18

12 References

1. | Globus Open Grid Services Architecture Development Framwork (OGSADF).
Wwww.globus.org/ogsal TechPreview|

2. | Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Globus
Project, 2002, www.globus.org/research/papers/ogsa.pdf|

3. | Tuecke, S., Czajkowski, K., Foster, 1., Frey, J., Graham, S. and Kesselman, S.
Grid Service Specification. Globus Project; Draft 2, 6/13/2002.
Www.gridforum.org/ogsi-wg/drafts/GS_Spec_draft02 2002-06-13.pdf]

4. | Unicore OGSA Demonstrator. Unicore, 2002.

5. | Web Services Description Language (WSDL) 1.1: www.w3.org/ TR/wsdl|

6. | W3C: SOAP 1.2: www.w3.0org/TR/2001/WD-s0ap12-20010709/|

7. | Sun Microsystems. Java API for XML-based RPC. JAX-RPC 1.0, JSR 101.
Java.sun.com/xml/jaxrpc/]

8. | Sun Microsystems. Java Servlet 2.3 Specification. JSR 53.
Wwww.j cp.org/aboutJava/communityprocess/final /jsr053/]

9. | W3C Recommendation. XML Schema Part 2: Datatypes.
Wwww.w3.0rg/ TR/xmlschema-2/]

10. | IBM. Web Servicesfor J2EE, Version 1. JSR 109.
Www.jcp.org/aboutJava/communityprocess/review/]sr109/

11. | Sun Microsystems. Enterprise Java Beans Specification, Version 2. JSR 19
Www.jcp.org/aboutJava/communityprocess/final /jsr019/|

12. | Sun Microsystems. Java APIsfor XML Messaging, Version 1.1
Www .jcp.org/aboutJava/communityprocess/final /jsr067/index2.html|

13. | Sun Microsystems. Java 2 Enterprise Edition (J2EE). java.sun.com/j2ee/|

14. | OMG. Common Object Request Broker: Architecture and Specification, Revision
2.2. Object Management Group Document 96.03.04, 1998.

15. | Sun Microsystems. Java 2 Standard Edition. (J2SE). [java.sun.com/j2se/|

16. | Sun Microsystems. Java 2 Micro Edition (J2ME). java.sun.com/j2me/|

19

http://www.globus.org/ogsa/TechPreview
http://www.globus.org/research/papers/ogsa.pdf
http://www.gridforum.org/ogsi-wg/drafts/GS_Spec_draft02_2002-06-13.pdf
http://www.unicore.org/downloads.htm
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2001/WD-soap12-20010709/
http://java.sun.com/xml/jaxrpc/
http://www.jcp.org/aboutJava/communityprocess/final/jsr053/
http://www.w3.org/TR/xmlschema-2/
http://www.jcp.org/aboutJava/communityprocess/review/jsr109/
http://www.jcp.org/aboutJava/communityprocess/final/jsr019/
http://www.jcp.org/aboutJava/communityprocess/final/jsr067/index2.html
http://java.sun.com/j2ee/
http://java.sun.com/j2se/
http://java.sun.com/j2me/

Appendix A: Open Issues

Service Data Container Hosting in EJB sandholm 07/13/2002
Service Data XML Collection Representation sandholm 07/13/2002
Service Data Container Hosting in EJB sandholm 07/13/2002
Example showcasing activtion/passivation and EJB | sandholm 07/13/2002
primary key mapping

PersistentProperties integration sandholm 07/13/2002
Delegation Skeleton Portability and sandholm 07/13/2002
ServiceProperties propagation

Representation of Passivated Servicesin Container | sandholm 07/13/2002
Registry

How to get areference to a ContainerRegistry sandholm 07/14/2002
Transient Factory Support sandholm 07/14/2002
Define GridServiceException hierachy sandholm 07/15/2002

20

	Introduction
	Related Specifications
	Scope
	Goal
	Grid Service Port Types as Java Interfaces
	Implementing Port Type Interfaces
	Registering Service Instances
	External Sate Management
	OGSI Container Interfaces and Classes
	ServiceSkeleton
	PersistentServiceSkeleton
	Delegation Skeletons
	FactoryServiceSkeleton
	ServiceActivator
	ServiceProperties
	ContainerRegistry
	ContainerRegistryListener
	ServiceDataContainer
	ServiceDataListener

	Use Case: Light-weight Java Grid service Implementation
	Java Subclass Implementation of Counter Grid service
	Tool Generated Code
	CounterFactoryImpl.java Source Code
	CounterImpl.java Source Code

	Java Delegation Implementation of Counter Grid service
	Tool Generated Code
	CounterFactoryImpl.java Source Code
	CounterSkeleton.java Source Code

	Use Case: Custom EJB Dispatcher
	Grid Service as an EntityBean
	Tool Generated Code
	CounterFactoryEjbImpl.java Source Code
	CounterEjbSkeleton.java Source Code

	References
	Appendix A: Open Issues

